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ABSTRACT

The Sunblazer is a small solar probe that must be
tracked by measuring azimuth, elevation, and range rate at
one station on the Earth's surface. The geometrical as-
pects of relating Earth station coordinates to an inertial
coordinate system are examined. A Kalman filter is devel-
oped to provide a recursive maximum-likelihood estimate of
the deviation of the probe's true state from a nominal state.
The filter is incorporated in the flow chart of a complete
data processing program. The dlagonal elements of the state
deviation error covariance matrix at conjunction are com-
puted for varying qualities of range rate data and are shown
to coinclde with the results of a similar investigation per-
formed by D. 0. Madl. In addition, the possibility of op-
timally scheduling the measurements is discussed.
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SYMBOLS

Initial value of ( )

Value of ( ) at stage 1

The quantity ( ) is nominal.

Quantity ( ) is a column vector.

Estimated value of ( ) before measurements

Best estimate of ( )

Deviation of ( ) from a nominal value

Time derivative of ( )

Vector (_) is coordinatized in frame n.

The transpose of the matrix or column vector ( )
Inverse of the square matrix ( )

Expected value of ( )

A function of ( )

6X6 state transition matrix from stage i to i+l
6X6 error covariance matrix before measurement

6X6 error covariance matrix of the best estimate
of the state deviation

3x6 matrix relating measurement deviations to
state deviations

6x3 filter weighting matrix
3x3 diagonal measurement error covariance matrix

3x3 orthogonal transformation matrix from coordin-
ate frame j to coordinate frame k

Position vector of the probe with respect to the
tracking station
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Position vector of the tracking station with
respect to the Sun's center

Position and velocity vectors of the Earth-Moon
barycenter with respect to the Sun's center

Position and velocity vectors of the Earth-Moon
barycenter with respect to the Earth's center

Position and velocity vectors of the Moon with
respect to the Earth's center

Position and velocity vectors of the probe with
respect to the Sun's center

Position of the tracking station with respect to
the Earth's center

6 component state vector consisting of R and V

Difference between true state deviation and
estimated state deviation

A 3 component row vector that represents the
first three elements in the first row of the
H matrix coordinatized in frame 5

A 3 component row vector that represents the
first three elements in the second row of the
H matrix coordinatized in frame 5

A 6 component row vector that represents the
third row of the H matrix in frame 5

aT and bT

— ——

eT

respectively coordinatized in frame 6
coordinatized in frame 6

Magnitude of r

Magnitude of p

Azimuth angle

Elevation angie

The projection of § along p

A measurement

Mass of the Earth

Mass of the Moon

Relates Bem to Beb and zem to Yeb
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°Jk Standard deviation of jJ in the k direction
€ Obliquity
T Mean obliquity
e Nutation of the equator in obliquity
8y Nutation of the equator in longitude
vy (T) Greenwich hour angle
ym(T) Mean Greenwich hour angle
Sa Difference between the true and the mean Green-
wich hour angle
¢ Geocentric latitude
L Longitude
® Rate of rotation of the Earth about its polar axis
JD Julian date
uT Universal Time
ET Ephemeris Time
AT Correction factor to relate ET to UT
NUMERICAL VALUES
n 1.0/82.3015
€ 23.4457587°
¥ 3.141593
. 8.6868171 x 1021 rt3/sec?
Sun (Ref. 12)
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1 Earth Radius 6378.3255 Km
1 Besselian Century 100 Yr = 36525 days
1 Time Unit (TU) 1l ¥r
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TRACKING STATION COORDINATES (El1 Campo, Texas)
28.84°N

96.25°W = 263.75°
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CHAPTER 1

INTRODUCTION

The Sunblazer solar probe is to be launched from Wallops
Island in the summer of 1968. It will be the first in a
proposed series of solar satellites which will be used to
investigate properties of the Sun's corona. The MIT Center
for Space Research has published a complete summary of the
objectives of the project and the composition of the probe
itself in Report PR-5255-5.

1.1 General Problem

This thesis is concerned with the tracking of this probe
in a manner which will utilize Kalman filtering techniques
to obtain a best estimate of its position and velocity. The
probe will contain a radio transmitter which will transmit
at two predesignated frequencies during the entire mission.
Directional antennas at the El1 Campo, Texas, tracking sta-
tion are to be used to obtaln the azimuth and elevation
angles of the probe during the flight. Knowing the trans-
mitted frequencies, the Doppler shift of the received signal
can be found. This Doppler shift is used to determine the
range rate of the probe relative to the station. These

three quantities, azimuth, elevation, and range rate, can



be used to determine the position and velocity of the space-
craft.

Two facts lead to the use of filtering techniques in
the determination of vehicle position and velocity. First,
azimuth;félevation, and range rate may be measured many times
during the course of the vehicle's flight. Second, applica-
tion of the laws of celestial mechanics will determine an
approximation for the position and velocity of the space-
craft. The redundancy inherent in the information availéble
allows the inaccuracies in the measuring system and tpe in-
accuracies in the approximate solution to be partially fil-
tered. How well these inaccuracies may be eliminated depends
upon, among other factors, their magnitude, the number of
measurements taken, and the times at which the measurements
are taken.

1.2 The Objectives and the Order of Presentation

The first of the two main objectives of this thesis is
the development of a computational procedure which uses ac-
tual data from the tracking station to compute a best estimate
of the position and velocity of the probe. This procedure 1is
described by a flow chart in Chapter 5 from which a computer
program can be written to process actual measurement data.
The second objective is to verify the results and conclusions
presented by D. 0. Madl in his Master's Thesis (Ref. 13).
This was done by using a model, as exact as possible, of the
Sun-Earth-probe system and computing what Madl called a
"Figure of Merit." The comparison with Madl's results is



made in Chapter 6. Also included in this chapter are some
comments concerning optimal scheduling of the measurements
which are an outgrowth of the main study of the thesis.

Chapter 2 describes the coordinate frames and transfor-
mations incorporated in the mathematical description of the
model. These coordinate transformations are used to compute
the elements of a matrix which relates the state of the probe
to the measurements. The analytic expressions in this ma-
trix are derived in Chapter 3. This matrix is an important
part of the filter which 1s used in the data processing pro-
gram. Chapter 4 is devoted to the discussion and explanation
of this filter. The program used to compute the numerical
results presented in Chapter 6 1is described and listed in
the Appendix.

l.3 General Assumptions

Several assumptions are inherent in all the material pre-
sented. Range rate is obtained by the reception of radio
signals from the probe as previously stated. It is assumed
that pure range rate data are available; that is, all biases
have been removed from the radio signal, and the Doppler
problem has been solved to procure range rate. If the data
contain unknown biases, the filter can be altered to obtain
a best estimate of these blases, and they can be removed.

The nominal probe orbit used for the calculations of the
"Figure of Merit" is that suggested by Harrington and used
by Madl.



The characteristics of this orbit are as follows:

Perihelion radius .528 AU
Aphelion radius 1.00 AU
Period 2/3 TU
Inclination to the ecliptic

at time of injection 0°
Launch date 22 Jul 66

This orbit is a close approximation to the orbits intended

for the actual flights.



CHAPTER 2

GEOMETRICAL ASPECTS OF TRACKING THE PROBE

In view of the goals of the Sunblazer project, it is im-
perative to know the state of the probe relative to the Sun.
Since data received at the tracking station yield informa-
tion concerning the probe state with respect to the station,
it is natural to assume that the desired probe state can be.
calculated by determining the station position and velocity

with respect to the Sun.

=
"

p + (2.1)

Bss
V=5tV
R, p, and Bss are position vectors from Sun to probe, sta-
tion to probe, and Sun to station, respectively, and equa-
tion 2.2 is the time derivative of 2.1. This, however, is
not the case because g'aﬁd ¢ cannot be determined with suf-
ficient acéuracy from the tracking data.
To obtain the desired accuracy in the calculation of
R and V, it is necessary to take a rather indirect approach

in which nominal values are specified for the state. This

permits nominal values to be calculated for p and p.

By = gn - R (2.3)
éN = YN - Yés (2.4)



Once nominal information is obtained, a Kalman filter can be
used to estimate the probe's true state.

To determine the nominal values in equations 2.3 and
2.4, 1t is necessary to relate the vectors in a single coor-
dinate frame. To do this, the complex motions of the Earth
in inertial space must be examined, and several intermediate
coordinate frames must be defined.

2.1 Motion of the Earth's Center

The center of the Earth revolves around the Earth-Moon
barycenter in approximately an elliptic orbit with a period
of about 28 days. The orbit of the Earfh's center around the
barycenter can be inferred from knowledge of the Moon's 6rb1t
around the Earth. It is this barycenter that is in a
slightly perturbed elliptic orbit around the solar system
barycenter, which, to a high degree of accuracy, 1s the cen-
ter of the Sun. To ald in the following analysis, Bss will
be divided into three different position vectors, geb, Bsb’
and r, which are described in figure 2.1. From the illus-

tration it can be seen that

-r (2.5)

e=R+Ryp - B

2.2 Coordinate Frames

The selection of the coordinate frames illustrated in
figure 2.1 was motivated by the availability of information
concerning the orientations of these frames with respect to
each other. The relationships between the frames are based

on the time varylng orientations of the Earth's equatorial
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plane, the ecliptic, and the vernal equinox direction. The
ecliptic is defined as the mean plane of the Earth's orbit
around the Sun. The vernal equinox direction is defined by

a line from the center of the Earth to the ascending node of
the ecliptic in the equatorial plane or, in other words, to
the point at which the Sun in its annual apparent path around
the Earth crosses the equator from south to north. (8:24)

The equator and ecliptic and hence the vernal equinox direc-
tion vary in spatial orientation due to the gravitational
effect on the Earth of other celestial bodies.

The motion of the equatorial plane is due to the gravi-
tational attraction of the Sun and Moon on the Earth's equa-
torial bulge and is commonly broken down into two separate
motions. The first motion, nutation, is the rotation of the
true polar axis about a mean polar axis with a period of ap-
proximately 18.6 years and a maximum amplitude of 9 seconds
of arc. The second motion, luni-solar precession, is the ro-
tation of the mean polar axis about the mean pole of the
ecliptic with a period of approximately 26,000 years.

The motion of the ecliptic is due to the gravitational.
attraction of the planets on the Earth as a whole and is re-
ferred to as planetary precession. Due to this effect, the
equinox precesses approximately 12 seconds of arc per century.

Luni-solar prgcession and planetary precession are nor-
mally considered :jointly as a general precession. The com-
bined result is a smooth, long term precession of the vernal

equinox direction. For a more complete discussion of



nutation and precession, see References 8 and 17.

The orientations of the frames labeled 1, 2, 3, and 4 in
Fig. 2.1 will be discussed in terms of the motions which
have been described. The reference plane of frame 1 is the
mean equatorial plane of the epoch 1950.0. This plane con-
tains the X1 axlis, which 1s defined by the mean direction of
vernal equinox at 1950.0. The Yl axis lies 90° east of X,
in the reference plane, and Z; completes the Cartesian frame.

The reference plane of frame 2 i1s the mean equatorial
plane at the time of interest, t, and the reference direcfion
Xz is the mean vernal equinox direction at t. The orienta-
tion between frames 1 and 2 depends upon the precessional
motion of the equinox in the interval 1950.0 to t.

The reference plane of frame 3 is the true equatorial
plane at time t, and the X, axls corresponds to the true di-
rection of vernal equinox at t. The orientation between
frames 2 and 3 is a function of the polar axis nutation.
Since nutation and precession are very long term effects,
frames 1, 2, and 3 will not differ from each other by more
than a minute of arc in a 20 year interval.

Frame 4 differs from frame 3 by the Greenwich hour angle,
Y, about the true polar axis Z3’u. Frame 5 is a standard
topocentric coordinate frame centered at the tracking sta-
tion. The x and z axes lie in the local meridian plane with
the z axis pointing toward the Earth's center and the x axis
90° from z in a northerly direction. The y axis points

toward the east and completes the orthogonal triad. An
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azimuth angle, A, is defined in frame 5 and will be measured
from the x axis to the projection of p on the plane defined
by the x and y axes. The elevation angle, L, 1s measured
from the x-y plane to p. At this point it is important to
note that there are at least two frames to which measurements
can be referred. In some instances, a measurement frame is
defined such that the z axis lies along the Earth's gravity
vector rather than pointing directly toward the Earth's cen-
ter. The z axis of such a frame would deviate from the z
axis of frame 5 by a small angle composed of two angles

known as the deflection of the vertical and the deviation of
the normal. For a more complete discussion of these angles,
see References 6 and 10. The entire deviation will not
usually be in the local meridian plane. It 1s possible to
calculate the deviations analytically and align the measuring
equipment such that frame 5 is instrumented. This is assumed
to be the case in the development that follows. If, however,
it is desired to instrument a frame defined by the gravity
vector, an additional rotation matrix reflecting the differ-.
ence between frame 5 and the actual measurement frame must
be introduced.

Frame 6 is a probe centered, flight path coordinate sys-
tem. The q axis of the frame 1is defined b& the probe veloc-
ity vector while the u axis lies in the direction resulting
from the cross produce R x V. The p axis is then defined by
Vx (RxYV).
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2.3 Expressing Position and Velocity Vectors in a
Coordinate Frame

Because the ephemerides of the Moon and the Earth-Moon
barycenter are avallable in inertial frame 1, the vector
equation 2.5 will be coordinatized in this frame. It is
convenient to express p in frame 5 and r in frame 4. Thus

equation 2.5 with frame specification can be rewritten as

o(1) = clczcicy o(s) (2.6)
or
(1) 2 ) (4)
e 1) = E(l + Eétl)) - Béé) - C%C%CE r L (2.7).

The superscript indicates the frame in which the components

k
J

transformation matrix from frame jJ to frame k. In frame 5

of the position vectors are given, and C. indicates a 3x3

the components of p are

(s) cos L cos A
p'5/ = pflcos L sin A (2.8)
-sin L

In frame 4 the components of r are

‘ cos ¢ cos 2
r(#) = r|cos ¢ sin 2 (2.9)
sin ¢ '

The components of gs and zs in a Sun centered frame 1 and

b b
the components of the position and velocity vector of the

Moon with respect to the Earth, gem and Yem’

tered frame 1 are obtained from the Jet Propulsion Laboratory

Ephemeris Tapes described in Chapter 5 and in References 14

in an Earth cen-
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and 15. As mentioned earlier, R and V can be obtained
-eb —eb

readily from R and V.. Considering the definition of the
“~em —€em

mass center of two bodies,

mmgbm = meﬁeb (2.10)

Bb is the position vector of the Moon with respect to the
m
barycenter, and me and m, are the masses of the Earth and

Moon, respectively. Adding Bebmm to both sides of equation
2.10 ylelds

+ = + .
(me m )R b m (R le) (2.11)
but R + = R

u R R (2.12)

Therefore, in frame 1

(1) _ (1) :

Rl = "R (2.1
and

v(1) = py(1) (2.14)

~eb —em
where

n=m/(m_+m) (2.15)
m e m

The elements of the transformation matrices C; and
C% are functions only of the time interval from 1950.0 to
the current time of interest, t. Since these matrices deal
with the extremely smboth, long term motions of precession
and nutation, their time rates of change are taken to be
zero.

The elements of the matrix Cz are a function of the
Greenwich hour angle, y, which can also be expressed as a

function of the time interval only. The time rate of change
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of this matrix is again a function of y and y or w, the
Earth's rotation rate. The matrix Cg is a function of lati-
tude and longitude, and its time derivative 1is zero since
the tracking station is fixed on the Earth's surface. Ana-
lytic expressions for all of the transformation matrices and
their derivatives are given in Chapter 5.

In summary, the validity of the following expressions

has been established.

p(1) = RO + ar(L) _ REL - cleged (%) (2.16)

Differentiating with respect to time

It has also been shown that given a speciflc time after the
epoch 1950.0 and the geocentric position of the tracking

(1) (1) (1)
station (¢ and t), the vector components of Bem , !em . Bsb .

ZQQ), and g(“) can be computed in the indicated frame along

with the transformation matrices Cl} C;, and éa.

3> €3, C3

)
Thus 1f a nominal trajectory is specified for the probe in
terms of R and V, values for the components of p and p could
be computed froﬁ equations 2.16 and 2.17. 'It is also possible
to obtain 5(5) and compute nominal values for the azimuth

and elevation angles according to equation 2.8. These nominal
values and the transformation matrices discussed will be used
in the development of the maximum likelihood filter. It will

also be necessary to use a transformation from frame 1 to frame

6. This transformation is discussed in Chapter 5.
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CHAPTER 3

MEASUREMENTS AND THE NOMINAL TRAJECTORY

As will be shown later, certain measurements and statis-
tical properties of the errors in these measurements can be
used to make an estimate of the probe's state. This will be
done in a manner that will minimize the mean square devia-
tion of the state of the probe from some assumed nominal
state. To do this, the state deviation must be related to
the measurement deviations.

3.1 General Equations

In general, it can be written that a measurement is
some function of the state.
m = f(x) (3.1)
Using the expression for 3(5) from equation 2.8 in equation
2.7, it is evident that the relationship expressed by equa-
tion 3.1 is nonlinear. For this reason a linearized Taylor
Series is used. Expanding equation 3.1 in a Taylor Series

about the nominal

T 'r] ‘
+ 1(x - ) ? of (x - Yy ¢+ . . . (3.2)
?5 5" [ﬁ (3‘:?) = EN
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Defining the deviations from the nominal,

fm = m - m (3.3)
Sx = x - X (3.8)

If the deviation from the nominal is small, then the series

may be truncated and written

fm = [32 8X (3.5)
3X
The size of the deviation depends on how well the nominal
trajectory fits the actual trajectory. This will be discussed
when the determination of the nominal trajectory is considered.
In the case considered, the measurements are p, A, and
L, and the state to be determined is the R and V in equations

v \']

2.16 and 2.17. It is assumed that R__, R Vems Ys

—em’ =sb? p» and r

are well known so that their deviations from these known
values are zero. g(s) is a function of A, L, and p while
the other vectors and transformation matrices are independent
of the measured quantities.

Taking the variation of R with respect to p, A, and L,

§R = 3R 8A + 3R 8L + 3R &b (3.6)
K L L)

3.2 Variation in Azimuth and Elevation

To get equation 3.6 in the desired form,
sm = £(5x) = hTsx (3.7)
each variation must be examined separately. First, SR due
to 6A

SR = 3R 6A (3.8)
3K
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Taking the partial derivatives of the quantities in equa-

tion 2.1 with respect to A and noting that %%ss = 0 yilelds
3R = 3g

A 3K (3.9)
From equation 2.4

-cos L sin A
31(5) = p cos L cos A (3.10)
£y 0

Dotting both sides of equation 3.8 with equation 3.10,

T

3g 8R = 2p 30 8A = p2cos? L sA (3.11)
K 3K 3K
Thus
-sin A
SA = 1 cos A| S8R (3.12)
p cos L 0

The coefficlient of 6R will be called the vector a.

A similar analysis for 6L ylelds

-sin L cos A

6L = 1 |-sin L sin A | 6R (3.13)
o) -cos L
with
(&) -sin L cos A
3p'%’ = p |-sin L sin A (3.14)
oL -cos L
and
3pTap = p2 (3.15)

9L 3L
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3.3 Variation in Range Rate

To determine the relationship for range rate variation,
8p, an indirect approach must be used.

Taking the variation of equation 2.1 with R, = O,

o
b e
!

= 8p (variation in position) (3.16)

Also

sV

§p (variation in velocity) (3.17)

p 1s the rate of change of p in the p direction.

o #lbl (3.18)
b= b (3.19)
Also °
2o = o2 (3.20)
Taking the time derivative of both sides of equation 3.20,
5Tp + pTh = 20b (3.21)
But
8% = o7b (3.22)
Thus
2’5 = 0b
p = %E; (3.24)
Taking the variation, °
. _ T. T,. T.
Go-ggsg*'g_;gg-g___g__g_g (3.25)

Since each term is a scalar, it is equal to its transpose.

Transposing the first term,

6p = olép + pTép - 2 b8p (3.26)

P e Y
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Taking the variation of equation 3.20,

6_?g_+ g?ég = 2pbp
! 22?6& = 2pdp
§p = plep

o]

Substituting equation 3.29 into 3.26,

éR
86 = el | —

sV

3.4 H Matrix in the Measurement Frame

(3.27)

(3.28)

(3.29)

(3.30)

Sp (3.31)
8p

Substituting from equations 3.16 and 3.17 for &p and Gé,

A measurement vector is defined

A
m=1L
P
SsA
ém = | §L| =
§p
-sin A, ¢cos A , o, 0, 0, 0
p cos L p cos L
-cos A sin L, -sin A sin L, -cos L, 0, 0, O
p p P
) —(Q¢g)§§ :—Zg?é)gT k g?
o )
]

(3.32)

(3.33)

(3.38)
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The matrix coefficient of §x is defined as H.

$m = H&x (3.35)
The elements of H are evaluateg along the nominal trajectory
‘for the Taylor Series 1s expanded about the nominal state
value.

3.5 Rotating into Flight Path Coordinates

For reasons stated in the following chapter, it is de-
sirable to have the deviations in the flight path coordinate
system. This requires that the elements of the H matrix be
evaluated in the frame most convenient for computation and
then rotated to the p-gq-u frame. " -

This is easy to accomplish in the case of the third row
of the H matrix. Since p and p may be determined in the in-
ertial frame (frame 1) from equations 2.16 and 2.17, they

need only be transferred to the p-q-u frame.

0(8) = c8 p(1) (3.36)
p(8) = cs (1) (3.37)

Using these, the third row of the H matrix is written

°|jo

3

T - T, y:(e)T _ ( Toy (8)T
hy [(p_ p)a (p p)e R
[

<6>T] (3.38)

The numerical calculation of Qz is accomplished in a slightly
different manner in the flow chart of Chapter 5.
The first and second rows are conveniently evaluated in

the measurement frame and will be called a® and g?. (These
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are the first three components; the last three in each row
are zero. The zero elements are unchanged by the rotation.)
These two vectors must be transferred to the flight path

coordinate system.

n = (cécic2cicy alshT (3.39)
hy = (cécicgcicy pls))T (3.40)

The vector measurement deviation can then be written

9 -
nl o :
SA T SR| (3.41)
ém=|sL|=|h; 0
6p | | =——z—- 8V
h3

The preceding derivations are similar to those presented
by Madl (Ref. 13).

3.6 The Nominal Trajectory

Since the elements of H must be evaluated along a nominal
trajectory, o, 0, p, P, A, and L must be determined along
the nominal. p and § are obtained from equations 2.16 and
2.17 for r, Rems Bsb’ R, and their time derivatives are
known time functions for a specified launch time and refer-
ence trajectory. p and p are scalars; hence, they are inde-
pendent of frame. Writing géS),

cos Ly cos A

(s) = cos LN sin A
p = p
N N Nin Ly N




21

The terms on the right are all calculable.

(s) = |y
= U
ey i (3.43)
where x, y, and z are the numbers calculated.

bN'= / x2 + y + z4 (3.44)

VxZ +y? + z¢

Ly = sin”? { -2z ] (3.45)

A = sin”! y
N cos LN V xZ + y? + z2 (3.46)
Py = DRp
N = ey (3.47)
°N

These are all of the gquantities needed to evaluate the H
matrix at all points along the trajectory.

Thus far, it has been assumed that a nominal trajectory
for the state has been given. This reference trajectory is
quite important for if the deviation from it 1s very large,
the truncation of the Taylor Series 1s not valid. The term
6x2 and those of higher order become significant. To obtain
the most accurate H matrix possible, it would be necessary
to compute the reference trajectory by numerically solving
the many body equations of motion in some manner similar to
the one described in JPL Tech. Report 32-223(Ref. 10). Sev-

eral simpler alternatives exist. The simplest assumption 1is
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that the probe is in an elliptical orbit about the Sun

which is determined by the burnout conditions. Another
method would be to use an on-board transponder to infer
vehicle position and velocity after burnout until the Earth's
sphere of influence is reached. A solar orbit could be de-

fined at that point.
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CHAPTER 4

MAXIMUM-LIKELITHOOD ESTIMATION

Several authors have described the theory of maximum-
likelihood estimation (Bryson, Battin, Kalman, etc.). Only
an outline of this theory will be given here, and the assump-
tions peculiar to the study of this thesis will be discussed.
The method presented here is essentially that given by
Bryson (Ref. 3). |

4,1 Deviation Equation

It is desired to estimate the elements of the -state de-
viation vector, §x, using knowledge of the deviations of cer-
tain measurable quantities, ém, from nominal values. The
measurable quantities contain random errors which have known
statistical properties. 1In equation form

ém = Héx + v | (4.1)
The H matrix is that developed in the third chapter, and v

is the measurement noise vector.

4,2 Error Covariance Matrices

To proceed, statistical knowledge of the measurement
noise 1s required. Thus
E(yvT) = R (4.2)

The expected value of the nolse vectbr'times 1ts transpose



24

is a positive definite matrix, R. That is, over many mea-
surements the dlagonal elements of the R matrix will reflect
the square of the standard deviations of the individual mea-
surements. Also, some estimate of the deviation 1s needed

such that
E [(55 - §x)(8x - az)T] =M (4.3)

é§x 1s the true state deviation which 1s 1inaccessible and
never known. &X is the estimated state deviation before a
measurement, and M 1Is an n x n positive definite matrix where
n is the dimension of the state.

4,3 Weighted Least-Squares Estimate

A weighted least-squares estimate, 6x, of the state de-

viation is found by minimizing the quadratic form

3 = Lsx - s0)TM 1 (sx - 8T) + (om - Hex)"R™1(ém - Héx)

(4.4)
The weighting matrices M™! and R™! .are the inverses of the
matrices that reflect the statistical properties described
before.

Bryson proceeds to show that the 6x chosen to minimize
this quadratic form is also that which is the maximum-
likelihood or minimum-variance estimate.

For convenience, this abbreviated notation will be used

in the development that follows.
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It is desired to minimize
J = %[(5 -0 (x - D + (m - BE)TR (m - Hp] (4.5)
Taking the differential,
a7 = ax?® [M‘l(g -X) - HR Y(m - Hi)] (4.6)

If 4J is to vanish for an arbitrary dx, the coefficient of

dg? must be equal to zero.
[M"l(g - X - HR 1(m - Hg)] =0 (4.7)

Rearranging and calling the x that satisfles equation .7

the best estimate X
(M~! + HTR-1H)R = HTR"!m + M~1X (4.8)
Adding and subtracting HTR’lHi from the right-hand side,
(M~! + HTR™IH)E = HTR-!(m - HX) + (M"! + HTR-1H)X (4.9)
Defining a matrix P such that
P-1 = M~! + HTR-IH (4.10)
and multiplying both sides of equation 4.9 by P,

= X + PHTR-1(m - HX) (4.11)

[
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Or in deviation notation, 4.11 is written

T

6% = 6x + PH R™1(ém - HéXx) (4.12) -

The best estimate of the deviation after a measurement
has been §§ken depends on an estimate of the deviation be-
fore the measurement, 63; the measurement deviation, ém, and
the P, H, and R matrices. The H matrix has been described |
before as relating the state deviations to the measurement
deviations and is evaluated along the nominal trajectory.
The R matrix is known from characteristics of the measuring:
system. The P matrix, which has only been defined thus far,
is the error covariance matrix of the estimated deviation.

4.4 Error Covariance Matrix After Measurement

The error, e, is defined as
e = 6% - &x (4.13)

It will be shown that
P=E [(cs_i - §x) (6% - 53{_)T] (4.14)

Using the abbreviated notation,

e=%-X+x-x (4.15)
Rearranging
e=x-x+ (% -3 (4.16)
From equation 4.11
£ - X = PHIR-1(m - HX) (4.17)

x + PHIR"1(m - HX) (4.18)

o
"

E]
|
]
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Using
m=Hx + v (4.19)
e =X - x + PHTR"1 [H(E - x) + Z] (k4.20)
Rearranging
e = (I - PHIR"IH)(X - x) + PHTR" 1y (4.21)

For convenlience, define a matrix K such that

K = PHTR™! (4.22)
e = (I -KH)(x - x) + Ky (4.23)

If the deviations and the noise are assumed to be independent,

that 1is,

E(vx') = E(xv?) = E(Xv}) = E(vX') = 0 (4.24)
then
E(eeT) = E [[(1 - KH)(E - ©) + Kv][(T - KH)(X - x) + KzJT]

(4.25)
Expaﬂding

E(eeT) = E [(I - KH) (X - 2)(F - (T - k)T
+ (I - KH)(X - ) (kYT
+ Kv(Z - 0T - k)T + KXX?KT] (4.26)
Using equations 4.2; 4.3, and 4.27,

E(eel) = (I - KH)M(I - KH)T + KRK®

(4.27)
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Premultiplying equation 4.10 by P and postmultiplying by M,

M =P + PH'R-!HM = P + KHM (4.28)
Or
(I -KH)M =P (4.29)
Substituting into equation 4.29,
E(eeT) = P - PHTKT + KRKT (4.30)

Using the definition of K from equation 4.24,

E(eeT) = P + (PHTR-!R - PHT)K® (4.31)
E(eeT) = P + (PHT - PHT)KT (4.32)
E(ee’) = P (4.33)

This is the desired result. The P matrix is the error covari-
ance matrix of the difference between the estimated and the
actual state deviations (equation 4.16). Another way of
stating this is that P is the error covariance matrix after
incorporation of a measurement.

4,5 Updating with the State Transition Matrix

The case being considered is best described by

6§1+1 = Qaséi + ridgi (4.34)

651 1s the state deviation at one time, and 6x,,,

viation at a later time. Ggi is a vector forcing function.

is the de-

For the present, the forcing vector will be considered iden-

tically zero. Thus
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6§1+1 = Q&GEi (4.35)

Qi is the state transition matrix from time ti to t 1’ and

i+

would be more completely written ﬁ(ti+1,ti). It is either

a known analytical function of time or may be found numeri-

cally. |
It follows that the best estimate at a given stage be-

- fore measurement 62& is the best estimate after the last

measurement updated with the state transition matrix.

S5 = 8y 5 18%10 (%-36)

It follows also that the best error covariance matrix be-
fore measurement at state i1 is the error covariance matrix

after the last measurement updated by the transition matrix.

= T ’
Mos 8y aPial,n (.31

(Both equations 4.38 and 4.39 are written assuming that the
disturbing force 1s equal to zero.)
Henceforth, Qi will denote the transition from state ti ,

t 1 .
o) ti+1 and Q; will denote the transition from ti+1 to ti

4.6 Initial Conditions

If it is assumed that the best estimate of the state
deviation before the first measurement is equal to zero,
§Xx =0 (4.38)
o)
then the initial error covariance matrix before measurement

is given by

T =
E(ngGEO) M (4.39)
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For the mission proposed for the first Sunblazer probe, Ling-
Temco —Vought has estimated the standard deviations of the
injection conditions. Madl used these deviations toicompute
initial state deviations. So that a comparison can be made
and because the LTV report is the best available information,
the same numbers used b& Madl for the initial error covariance

matrix will be used here. They are as follows:

2 - 2 = 2 = -8 2
oRp aRq %Ru 10.7 x 10 AU

"

Q
N
it

Vp fu = 15.3 x 10™% (AU/Yr)?
o%q = 2.9 x 10™* (AU/Yr)2 (4.40)

These are the diagonal terms of the error covariance matrix
at injection written in frame 6 or the flight path coordinate
system. The assumptions made by Madl still apply. That is,
the error in position at burnout and the error in velocity

at burnout in the p-u plane are independent of direction.

The R matrix is a function of the devices used for taking
the measurements. The error in each separate measurement is
assumed to be independent of the others so that the R matrix
is a diagonal matrix (all the elements off the main diagonal
are equal to zero). Madl assumed a one-tenth degree varia-
tion in the two angle measurements and varied the quality
of the range rate data to determine its effect. The same
procedure will be used here. These variances will be as-

sumed constant over the entire flight. If knowledge of the
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change in the variances with time were available, it could
be included in the filter and would improve the estimate of
the state deviation.

4.7 Recursive Estimation

Knowing the initial deviation error covariance matrix,
Mo (o denotes injection), a measurement must be taken at

injection to determine the Po matrix.

-1 = 1 Trp=-1
Py M; + HORTIH, (4.41)
Pl = — T —1 - — ‘.
6% = ox + P H R™1(sm HydX,) (h.42)
Or
82 = P HIR !ém (4.43)
-0 0O o0 -0

since 626 has been assumed equal to zero.

For the next measurement,

M = 3P0 (4.44)
X, = Q6% (4.45)
PT! = MT! + HIR IH (4.46)

This process is repeated for as many measurements as de-
sired. It 1s evident that measuring on the average decreases
the uncertainty in the estimate of the state deviation.
Looking at equation 4.10, M~! is a positive definite matrix,
and the HTR'IH matrix is also positive definite. Thus each

measurement increases the previously updated P~! matrix and
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decreases the P matrix. This P matrix establishes the gual-
ity of the estimation of the state deviation.

For simulation purposes actual measurement data are not
available. However, since the MO and the R matrices are
available, and the H matrix is evaluated along the nominal
trajectory, it 1is possible to calculate the error covariance
matrix, P, at conjunc%ion. This is what Madl calls his
"Figure of Merit" (13:31). As stated before, this error
covariance matrix indicates the accuracy of the estimate of
the state deviation found when using actual data. A P ma-
trix at conjunction was computed, and the results are com-
pared with Madl's in Chapter 6.

4.8 State Transition Matrix

Thus far, nothing has been sald about the state transi-
tion matrix, Qﬁ. This matrix is determined by the choice of
a nominal orbit for the probe. Since a two body orbit has
a state transition matrix whose elements are analytic func-
tions of time, this is the nominal orbit chosen for the com-
putation of the results in Chapter 6. A more accurate result
might be obtalned by assuming the nominal orbit fo be a many
body problem with the Sun as the principal body. Thils would
complicate the calculations a great deal. Either the state
transition matrix would have to be determined numerically,
or the disturbing function, u,, in equation 4.36 would be a
nonzero vector, and a ri matrix would have to be found.

Numerical integration would be necessary in either case.
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Since a program written by Mr. Jack Fagan for calculating
the error covariance matrix was available, the two body as-
sumption for a nominal probe orbit was used. This seems
Justified for the purposes of this study and would be justi-
fied in the actual processing of data if the state deviation
remained small. Mr. Fagan's program uses an analytical
state transition matrix in the flight path coordinate system.
This 1s why the p-gq-u coordinate system was defined. The
flow chart presented in Chapter 5 presumes a state transi-
tlon matrix based on many body theory.

4.9 Prediction

Measurements cannot be taken continually through conjunc-
tion for the effects of the corona of the Sun destroy the
transmission of the radio signal. Madl determined that the
two-week period on either side of conjunction was the only
time when measuremenéé could not be taken. His criteria
will be used here. From this it 1s apparent that some method
must be used to determine the state deviation during this
period for this is when it must be known. The last measure-
ments will be taken two weeks before conjunction. The best
estimate of the state deviation from that time until two
weeks after conjunction will be the best estimate after the

last measurement updated with the state transition matrix.

8, = ey e, (4.48)

td is the time during the conjunction phase of the flight



34

when knowledge of the deviation is desired, and t is the time
of conjunction minus two weeks.

The P matrix does not depend on the actual measurements
and may be calculated for'any point along the trajectory.
However, since no measurements may be taken for a four-week
period, the best indiéétion of the certainty of the estimated
state deviation during this period is the error covariance
matrix after the last measurement, PT, updated with the state

transition matrix.
_ T
Ptd = ¥t TIP P (L ,,T) (4.49)

(Both equations 4.48 and 4.49 are valid only for the period
when no measurements are available.)

4.10 Summary

To review, a method has been developed to recursively
estimate the state deviation along some nominal orbit using
measurement data. Thls procedure requires knowledge of the
initial deviation error covariance matrix and the error
covariance matrix of measurement deviations. It has been
assumed that (1) the measurement errors are uncorrelated
which makes the measurement error correlation matrix diagonal,
(2) the measurement noise and the state deviation are un-
correlated which makes the P matrix the error covariance
matrix after measurement, and (3) the assumptions stated be-
fore concerning the initial injection errors still apply.

This allows the computation of the initial M matrix.
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All quantitiles except the actual measurements and the
updated best estimate of the state deviation may be precal-
culated. Thgt is, with an assumed nominal orbit, the H1 and
Pi matrices may be ealculated. Also the nominal measurement
values, my, may be calculated. To process the actual data,
the measurements must be taken and used with the precalculated
nominal measurements to get the measurement deviations.

m - m = ém (4.50)

Then the previous best estimate is updated, and the current

best estimate is obtained (equations U4.45 and 4.UT).
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CHAPTER 5

STATE ESTIMATION PROGRAM

The state estimation program which 1is described in this
chapter will be considered in two parts. (Henceforth, for
convenience, this program will be referred to as SPADAF for
SPAce DAta Filtering.) ‘

5.1 General Description

In the first part of the program, the nominal measurement
values and the elementg of the H matrix in frame 6 are cal-
culated. The motions of the Earth described in Chapter 2
are taken into account along with the motion of the probe
on its nominal trajectory. The transformation matrices de-
fined in Chapter 2 are computed in the subroutines labeled
TR1, TR2, TR3, and TR6. These subroutines, along with the
subroutine TRAFER, which multiplies a three-component column
vector by a 3x3 matrix, and the JPL Ephemeris Tapes, are
discussed in sections 5.6 and 5.7.

The second portion of SPADAF makes use of the results
obtalned in part one to filter actual measurement data in
real time and thus arrive at an estimate of the probe's
state in frame 6. The equations for the estimation are pre-
sented in Chapter 4 and are repeated in the SPADAF flow

chart, which 1is presented in section 5.5.
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In both parts of SPADAF, information based on a predesig-
nated nominal trajectory 1is needed. BN and YN are required
in the calculation of H, while in the filtering section, it
is necessary to know the state transition matrix along the
nominal trajectory. Several methods exist for calculating
BN’ Yﬁ, and Q. The simplest of these would be based on a
two body assumption, while the most complicated would take
into account the influence of each planet in the solar system.
Programs are avallable at the Center for Space Research
which compute the required nominal quantities at any time
past injection. These programs take into consideration the
major perturbing effects that would be encountered by the
probe.

Preceding the flow chart is a list of the inputs neces-
sary to process measurements for a particular case. The
inputs are described in the listing with sufficient detail
except for the time inputs. Since practically all of the
quantities computed in SPADAF will be time dependent, it 1is
important to choose a consistent and an accurate system of
time. Thils will be discussed in section 5.3.

5.2 Possible Changes

There appear to be two possible changes to SPADAF that
may be desirable or necessary in the future. The first
change arises when the frame in which the measurements are
taken deviates slightly from frame 5. This was discussed in
Chapter 2.
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The second change arises when it appears that the computed
eStimate of the state deviation, 62, becomes large enough tb
invalidate equation 3.5. To correct this situation, it may
be necessary to check the magnitude of sg‘at each measure-
ment and redefine the nominal trajectory based on the best
estimate of the true state, X, at the time 6% approaches the
point where equation 3.5 is no longer valid.

5.3 Systems of Time Determination

The purpose of this section is merely to introduce some
of the concepts used in the determination of time and to
provide a basis for understanding the time inputs required
in SPADAF. For a complete and authoritative survey of time
systems, see Reference 8.

Prior to the discovery that the Earth's rotation rate,
w, 1s varlable, periods of time were defined by the relative
positions of celestial bodlies with respect to the Greenwich
meridian. These time systems are not uniform since the
length of a solar or a sidereal day varies. The desire for
a4 uniform measure of time led to the adoption of Ephemeris
time (ET) in 1958.

Currently, there are fhree commonly used time systems,
which are as follows:

1. Universal time (UT) is defined by the diurnal (daily),

nonuniform motion of the Earth with respect to the
Sun.
2. Sidereal time 1s defined by the diurnal, nonuniform

motion of the Earth with respect to the stars.
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3. Ephemeris time (ET) is defined by the laws of dynamics.
The lengths of the various time units in this system
are fixed by definition.

Sidereal time and universal time are related by a numerical
formula, while UT and ET differ by the varying quantity AT .
which must be determined empirically. In practice, AT 1s
determined from observed motions of the Moon.

To provide a continuous count of the days that have passed
since an epoch far in the past, the concept of the Julian
date was established by astronomers. A Julian day number
has been assigned to each day, beginning at Greenwich noon
(12P), that has elapsed since January 1, 4713 B.C. The
Julian date of any instant in time past the 4713 B.C. epoch;
includes the Julian day number plus the fraction of the day
past 12h.

Originally, the Julian day count was intended to be a
contlnuous count of mean solar days. Although ephemeris
time is uniform, it is still possible to use a similar con-
tinuous day count based on ET. Since the beginning of
ephemeris time was defined as January 0d 12h 1900 (ET), the
Jullan date (UT) is very close to the Julian date (ET) at
that instant. Because of this definition, AT is small at
the 1900 epoch but begins to grow as time progresses from
that epoch. |

The Ephemeris Tapes used in SPADAF are based on an epoch
defined by the beginning of the Besselian year 1950. This
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epoch is denoted by 1950.0 and is determined by the position

relative to the Earth of an imaginary point (fictitious sun)

on the mean celestial equator. The Julian date (ET) cor—

responding to 1950.0 is 243 3282.423357.

5.4 Program Inputs

1.

10.
11.

Geocentric latitude, ¢, and longitude, t, of the
tracking station in degrees.

Initial (injection) position, EO(AU), and velocity,
YO(AU/Yr), of the probe relative to the Sun in
frame 1.

Error covariance matrix at injection MO(AU and
AU2/Yr2),

Measurement error correlation matrix R(AU2/Yr2 and.
rad?).

Magnitude of the Earth's radius r at the tracking
station in AU.

Julian date (UT) of injection in days.

Julian date (UT) of the measurement in days..
Correction factor AT to convert universal time to
ephemeris time in days.

The measurements A, L, and p in rad and AU/Yr.

JPL Ephemeris Tapes.

Subroutines or tapes to provide the nominal R, V,

and § at the measurement times.
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5.5 SPADAF Flow Chart

Begin Computation

)

Calculate time increments in proper units for
compatibility with subroutines TR1l, TR2, the
Ephemeris Tapes, and the nominal trajectory

routines.

Call TR1 to calculate C} and a scalar, $a, to

be used in TRZ2.

Call TR2 with N.

-1 to calculate CJ.

Call TR2 with N = 1 to calculate C3.

i

Convert ¢ and ¢t from degrees to radians, and

call TR3 to calculate Ci.

Obtailn the nominal position, BN’ and velocity,

YN’ of the probe in frame 1 relative to the

Sun at the time of measurement.

!
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}

Call TR6 using R{!) and ¥{1) to calculate C§.

2

Calculate the components of r in frame 4 using

equation 2.9.

+

Call TRAFER with M < N to calculate 3(5).

L 4

Obtain R b> Ysp» Reps and m in frame 1 from

—s =s Zem Ve

the JPL Ephemeris Tapes using the Julian date

(ET) of the measurement time.

¥

Set n = 1/82.3015 and form the vector

(1)
(BN “Byp t “Eem) '

b

Transform the preceding vector to frame 5 by
using TRAFER three times in succession with

M < N and C!, C3, and C} respectively.

L 4

Subtract 5(5) from the preceding result to

obtain gN in frame 5.
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}

Calculate Py»> the nominal magnitude of p.

+

Calculate the nominal value of elevation, LN’

using equation 3.45,

to determine Probe is
if the probe is 3 below the
viewable. No horizon.

Is LN>0?

Yes

Calculate the nominal value of azimuth, AN,

using equation 3.46.

*

(1)
Form the vector (Vy - V., + nV_ )

+

Transform the preceding vector to frame 5
using TRAFER three times in succession with

M <N and Cl, C3, and C! respectively.




4y

|

Transform the vector (BN - Bs + "Bem)(l) to

b
frame 5 using TRAFER three times in succession

with M < N and C}, éa, and C¢ respectively.

Calculate the nominal value of é(s).

s ( _
by®) = oiose] (B - Ygp * Vo) (V)
(

(1)
* By

Rsb

Calculate the nominal value of p.

.« _ .. T.
oy = (gNgN)/pN

«

Calculate the first two rows of the H matrix

in frame 5.

H

11 -sin AN /chos LN

Hy, = cos Ay /pycos Ly
Hyg = Hyy = Hyg =Hg=0

H

21 -sin LN cos AN /oN
Hy,, = -sin Ly sin Ay /pN

Hy3 = -cos Ly /oy
H

H

24 25 = Hyg =0

l
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|

Calculate the last row of the H matrix in
frame 5.
Hy,, Hy,, Hy; = Three components of
[(ogp, )by = (2yby)ey1/03

Hy,, Hys, Hyg = Three components of gN/pN

(A1l vectors are coordinatized in frame 5.)

4

Transform the three measurement vectors of
the H matrix from frame 5 to frame 6 using
TRAFER four times in succession with M > N

and C¢, C3, cl, and C$ respectively.

Check

to determine

if this is first Go to A

measurement.
(1=0)

Invert Mo and R.

|
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|

Calculate and store:

= 1 Tr-1 -1
1:’O (M; +H0R HO)

Calculate the initial weighting matrix.

- Tr-1
Ko = POHOR

Calculate the initial measurement deviation

vector.

620 B - ™o

Calculate the initial best estimate of the
state deviation.

A 3
650 = KO(GEO)

Calculate the initial best estimate of the

state.

ol
X =X + &%

Return to start for new inputs.
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Calculate Q&-l based on the time increment

from i-1 to 1.

Check
the time of

flight to determine
if the probe 1s withi

Go to Prediction

two weeks of
conjunction.

Calculate and invert Mi'

T
M= Qi-lpi-lﬁi-l

3

Calculate and store:

- 1 Tp-1 -
Pi = (M; + HiR Hi) 1

<

Calculate the weighting matrix.

= P,HIR"!

Ky = PyHy

!
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|

Calculate the measurement deviation.

"
-
fe-J
v
=
-
O
d
3

£ 1B,
"

~
z>

v
2

-

; .

d

Update the previous best estimate of the state

deviation.

Calculate and store the current best estimate
of the state deviation.

= 6x + K (& - §x
6%y = 6%, + K (om - H %))

¥

Calculate the best estimate of the probe's

state in frame 6.

N

o
= +
xI xNi le

¥

Return to start for new inputs.
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(:Predictian;>

Predict the current best estimate of the state
deviation by updating the previous best esti-

mate with Q& 1°

2 =8, 0%,

Calculate the predicted best estimate of the

probe's state.

i

Return to start for new inputs.
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5.6 The Subroutines

TR1

This subroutine involves computing the elements of a
transformation matrix from frame 2 to frame 1 and a trans-
formation matrix ffom frame 3 to frame 2. The output of the
subroutine is the matrix C}C% and the scalar $a.

The elements of the C; matrix are representative of the
luni-solar and planetary precessions of the mean equatorial
plane. The computational form for the 9 elements of the ma-
trix are as follows:

1 - .00029697T2 - .00000013T3

a,

a2 = -a,, = .02234988T + .00000676T2
- .000002217T3
ayj3 = -a;, = .00971711T - .00000207T2
- .00000096T3
a,, =1~ .00024976T2 - ,00000015T3
a,, = 2, -.00010859T2 - .00000003T3
a,, =1- .00004721T2 + .00000002T3 (5.1)

The time T in the above expressions 1s the number of
Julian centuries of 36,525 days past 1950.0. Theoretical
discussions of the matrix elements are presented on page 66
of Reference 10 and in Reference 8. The C; matrix described
here éorresponds to the transpose of the A matrix outlined
on pages 66 and 67 of Reference 10.

The elements of the Cg matrix represent the nutation of

the Earth's true equator about a mean equator and are of the
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form
1 dycos T S¢sin €
C2 = | -8¢cos © 1 Se (5.2)
3 - sin ¥ -8¢e 1

8¢ denotes the nutation in longitude, while §¢ denotes
the nutation in obliquity. Obliquity is the angle at which
the equatorial plane is inclined to the ecliptic. € 1s the
mean obliquity of-date.

The computational férms for 6y, 8e, and € are rather ex-
tensive and will not be given here. They are functions of
time only and are presented on page 68 of Reference 10. &y
and 8¢ are also carried on the JPL Ephemeris Tapes.

To complete the computation in TR1, Cg is multiplied by
C; to yield the desired transformétion matrix Cl. The
scalar, 6a, is equal to éycos €, one of the elements of the
Cg matrix.

A 1listing of a subroutine TR1 appears in the Appendix.
This subroutine is identical to the one just described with
the exception that the matrices C% and C} are computed, ané
the output is the matrix C}, rather than C;.

R ;

In TR2, the daily rotation of the Earth about its polaf
axis 1s taken into account. The routine gives either the
matrix Cz or its time rate of change éz, depending on the
value of an integer N appearing in the subroutine argument
list. _If N is negative, Cz 1s computed, but if N is posi-

tive, éz is computed.
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The matrix Cz performs a simple rotation about the polar
axis through the Greenwich hour angle, y(T), of the vernal
equinox. The elements of the matrix are

cos y(T) -sin v(T) O

= | sin y(T) cos y(T) O (5.3)
0 0 1

c;
v(T) is measured from the X axis of frame 3 to the X axis of
frame 4.

Y(T) = v (T) + éa (5.4)
where 6a i1s computed in TR1 and the mean value, ym(T), is
given in Reference 10 as

vp(T) = 100207554260 + 0298564734604 + (299015)10713a2 + wt

0 < ym(T) < 360° (5.5)
T is the current epoch in UT, while 4 1s integer days past
o January 1, 1950, and 't is seconds past ON of the time T.
w, the variable Earth rotation rate, is given in Reference

10 as
w = .00417807417/(1 + (5.21)10°13d) deg/sec (5.6)

The elements of C3 are
-sin y(T) -cos y(T) O

w cos Y(T) -sin y(T) O (5.7)
0 0 0

)
£ w
[}

A listing of this subroutine is given in the Appéndix.
TR3
This subroutine computes the transformation matrix from

frame 5 to frame 4. The elements of Cg are a function
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only of geocentric latitude and longitude.

-sin ¢ cos ¢t =-sin & -cos ¢ cos 2

Cg‘= -sin ¢ sin ¢ cos ¢ -cos ¢ sin t (5.8)
cos ¢ 0 -sin ¢

A listing of this subroutine appears in the Appendix.

86 .

TR6 is used to compute the transformation matrix from
frame 1 to frame 6, the flight path coordinate system. The
computation is based on the knowledge of the three components
of R and the three components of V in frame 1 plus the knowledge
that the q axis of frame 6 is défined by the direcfion of V,
and the u axis is perpendicular to the plane of R and V. The

elements of C? are

b,,5 b;,» b;; = Three components of V X(R X V)/|V X(R X V)|
b,,s byys b,y = Three components of v/|v]
by,s b3y, byy = Three components of R X ¥V/|R X V| (5.9)

In the preceding expressions, R and V are coordinatized in

frame 1. The transformation to frame 6 is required only be;
cause the state transition matriwias developed in that frame.
A listing of TR6 appears in the Appendix.
TRAFER

This subroutine takes a 3 component column vector and
multiplies it by a 3x3 matrix. The matrices used in TRAFER
ck

are the transformation matrices, 5’ generated by the TR

subroutines. The routine will multiply the vector by either
J

C? or 1ts transpose, which is Ck’ since the transformation

matrices are orthogonal.
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If the integer M is greater than the integer N, the

operation performed is

AR - ck Al (5.10)
If M < N, |
RN CIJcT K3 (5.11)
- ci Ak) (5.11)

If M =N,
A0 = 1p(3) (5.12)

where I is the identity matrix and A is an arbitrary column
vector that must be specified along with the transformation
matrix to be used when TRAFER is called. A listing of TRAFER
is given in the Appendix.

5.7 JPL Ephemeris Tapes

The JPL Ephemeris Tapes considered in this program are
capable of providing the position and velocity of the planets,
the Moon, and the Earth-Moon barycenter in the equatorial co-
ordinate system of the mean equator and equinox of 1950.0
(frame 1). Planetary and Earth-Moon barycenter data are
heliocentric and are expressed in AU and AU/day while the
lunar data are geocentric and expressed in Earth radii and
Farth radii/day. The tapes also provide the nutations and
nutation rates in longitude and obliquity.

The argument of the tapes is the Julian date (ET) of
the time of interest. For a discussion of the theory be-

hind the Ephemeris Tapes, see References 8, 14, and 15.
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CHAPTER 6

RESULTS AND CONCLUSIONS

To evaluate the method employed to obtain the best esti-
mate of the probe's state, g, the state deviation error co-
varliance matrix at conjunction, Pc, was computed. Fortunately,
to compute this matrix, it i1s not necessary to have simulated
or actual measurement data. The six diagonal elements of Pc
are the standard deviations squared of the 6 components of
the probe's state at qonjunction in the p-q-u coordinate frame.

6.1 The Comparison

In reference 13, a similar state determination process
was evaluated by D. 0. Madl. From his results, he concluded
that the estimation uncertainties (o) of 4 of the 6 state
components can be reduced to 20% of the value calculated with-
out using range rate data. To achieve the 20% reduction, the
uncertainty in the frequencies transmitted from the probe
(of) must be reduced to 1 part per 108 or 3/4 cycles per sec-
ond. In his investigation, Madl assumed that (l)ra nonrota-
ting Earth is in a circular orbit around the Sun, (2) the
tracking station is located at the center of the Earth,

(3) azimuth is defined as the angle between the Earth-Sun

line and the Earth-probe 1line, and (4) elevation, the angle
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between the Earth-probe line and the ecliptic, is zero.

The results of the computation of Pc based on these
assumptions are presented in Table 6.1 and shown graphically
in Figures 6.1 and 6.2. The results presented in Table 6.2
and in Figures 6.3 and 6.4 were obtained by discarding these
simplying assumptions and considering the complete Sun-Earth-
probe system. That is, the complex motions of the Earth
described in Chapter 2 were taken into account. Since the
tracking station was placed on the Earth's surface; azimuth
and elevation were redefined. (See section 2.2)

The numbers in Table 6.1 are very close to those in Table
6.2. This indicates that Madl's conclusions are valid even
when the complete geometrical model 1s considered. The fact
that the results do agree does not mean that the simplifying
assumptions can be used in the processing of actual data.
These assumptions were used to construct a simple geometric
model in order to evaluate the application of Kalman filtering.
In an actual data processing scheme such as SPADAF, only the
complete geometrical model is valid. To illustrate this
point, consider the H matrix which 1s based on the nominal
values 5N’ AN, and LN' The nominal values are not the same
for both models. For example, elevation is always zero in
the simplified model, while in the actual situation, elevation
would vary during the day as the probe appeared to move across
the sky because of Earth rotation.

Although the results of this analysis verify Madl's con-

clusions, the numbers presented in Table 6.1 do not agree
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exactly with the numbers he presented (13: U45). This dis-
agreement is due to mistakes iIn the program he used to
compute Pc.

6.2 Measurement Scheduling

To make a comparison between the results computed using
Madl's model and those computed using the complete model,
his original time schedule was changed to conform with times
at which ephemeris data was avallable. The change in any one
measurement time was not more than two days. It can be seen
by comparing the data in Table 6.1 with that in Table 6.3A,
that this slight change caused a 10% to 30% change in the
diagonal elements of the Pc matrix.

This result suggested that some "best" schedule might
exist. The measurements affect the Pc matrix by the relation-
ship expressed in equation 4.10. By carrying out the matrix
multiplication for the term HTR™!H, the relationship of the
various elements of the H matrix to the elements of the P
matrix can be seen. This relationship shows that by increas-
ing the elements of the H matrix at each measurement time,
the Pc matrix will be decreased. H 1is a function of A, L,

e, and p. In the simple model L is constrained to be zero.
Because azimuth varys slowly over the course of the orbit in
the simple case, it has a small effect on the computation of
the H matrix. Thus the simple model can be used to investi-
gate the effect of p and p on the P, matrix for several mea-
surement schedules. The low range rate, high range rate, and

early time data sets presented in Table 6.3B, C, and D show
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the wide varliation in Pc for different schedules.

First, it is interesting to compare the out-of-plane
components for the three schedules. Since range rate does
not affect the out-of-plane component in the simplified
model, the out-of-plane standard deviations are the same for

all of's.

Low Range Rate ¢ 3614 Km

Ru

o .00914 Km/sec

Vu
High Range Rate %Ru k507 Km

o .0178 Km/sec

Vu

Early Times Oru = 1627 Km
o = 0116 Km/sec
Vu

The position deviation for the Early Time group is by
far the smallest. This 1s reasonable for the early times
were grouped when range had its-smallest value. v% 1s the
only element of the H matrix that enters in the computation
of the oy element of P,. If p is small, & will be large,
and Pc should be decreased. The velocity components are
affected by the position deviation through the state tran-
sition matrix. A reasonable explanation for the differences
in these velocity variations is obscured by the complex math-
ematical relationships.

Next the in-plane components will be compared for two

frequency variations. First when Op = 75 cps,

Low Range Rate Opp = 19,607 Km



o, = 108,695 Km
ovp = .0b419 Km/sec

Oyq = .00793 Km/sec

High Range Rate °Rp = 23,135 Km
oRq " 144,105 Km
°Vp = 0564 Km/sec
°Vq = ,00929 Km/sec
Early Times °Rp = 28,538 Km

ORq = 132,636 Km
oyp = .0536  Km/sec
ovq = .0114  Km/sec
op = .75 cps
Low Range Rate SRp = 3127 Km
ORq = 10,426 Km
= ,00444 Km/sec
= ,00131 Km/sec
High Range Rate °Rp = 1716 Km
ORq = 6135 Km

o = ,00308 Km/sec

Vp

°Vq = ,000687 Km/sec
Early Times °Rp = 3012 Km

GRq = 9608 Km

°Vp = ,00394 Km/sec

°Vq = ,00119 Km/sec
The in-plane components are functions of A, p and 5.
When knowledge of the range rate is not good, the low range

rate schedule produces smaller in-plane variations.
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However, when the quality of the range rate information im-
proves considerably, the high range rate schedule determines
better in-plane components.

The various schedules used indicate that while some "best"
mission schedule does exist, it is not just a simple function
of the measurement variables. The quality of the measure-
ments and the state transition matrix must also be considered.

In the actual data processing sitﬁdfion, the problem may
be examined in two parts. The first is the mission sched-
uling phase which 1s the same as that lllustrated by the
simple model. That is, since p and p vary slowly, the meas-
urements should be scheduled over the course of the mission
with the values of p and ¢ in mind. Next a daily time sched-
ule could be worked out in lighﬁ of the large diurnal varia-
tion of azimuth and elevation caused by the Earth's rotation.
(Their values are constrained by the viewability of the probe
from the station and by the Earth-probe position relation-
ship.) Since p and p do not vary a great deal during the
course of a day, changing all the times by six hours would
allow the effect of azimuth and elevation to be studied.

The data presented in Table 6.3E can be compared to the data
in Table 6.2. For just a six hour change in all the measure-
ment times, the elements of the Pc matrix differ by as much
as 30%. This would suggest that some "best"™ dally schedule
does exist.

The effect of the H matrix is not the only factor that

must be considered in the actual case. The fact that
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atmospheric refraction has a greater effect when the elevation
angle 1s small might restrict the allowable measurement times.
Also, there might be physical restrictions on the pointing

of the antennas. A possible extension of this thesis would
be to examine the scheduling problem in depth, including the
mathematical maximization problem as well as practical

considerations.
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APPENDIX

THE COMPUTER PROGRAMS FOR P

The object of this appendix is to describe the two com-
puter programs used to calculate the state deviation error
covariance matrix at conjunction, Pc’ Both programs are
written in Fortran IV for use on the IBM System 360.

A.l Madl's Program

The first program utlizes a main program and a subroutine
VCTR based on Madl's simpliﬁ;ed model of the Sun-Earth-probe
system outlined in Chapter 6. ‘

The inputs for this program are the measurement times,
ST(I), in years past launch; the three measurement variances,
SS(J), in rad? and AU2/Yr?; and the 6 elements of the initial
error covariance matrix, EO(K,K), in AU2Z and AU2/Yr2.(13:48)
Other variables in the program are as follows:

AM semi-major axis of the nominal probe trajectory
U Sun's gravitational constant
E nominal probe orbit eccentricity
AVN mean angular motion of the probe
AT eccentric anomaly of'the probe's initial point
A listing of the maln program and the 17 subrouéines used

is presented in A.A4. The subroutine VCTR computes the 18
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elements of the H matrix while the TR6 and TRAFER routines
deal with vector transformations and are described in Chap-
ter 5. KEPLER 1s based on Battin's universal formulae for
conic orbits.(2:49) When the vector components of the ini-
tial position and veloclity of a body are specified in a co-
ordinate frame, KEPLER computes the components of position
'and velocity in the same frame at some specified later time.
Two body mechanics are assumed.

The remaining 13 subroutines, XTRP, TRUE, CCOM, PERI,
NVRT, MTRM, MTRN, MTRS, MTRT, MPYl, MPY2, MPY3, and SUM,
were written by Mr. John Fagan and are discussed briefly in
Reference 13. Basically, Fagan's routines calculate a two
body state transition matrix in frame 6 and use that matrix
to continually update best estimates of P which are based on
the H, R, and M matrices.

A.2 The Geometrically Exact Program

This program utilizes a main program and a subroutine
VCTR based on the actual motions of the Earth in inertial
space. The program listing presented in A.5 contains the
main program and the subroutines VCTR, TR1l, TR2, and TR3.
These last three subroutines were explained in Chapter 5.
Although not contained in the listing, this program uses the
subroutines TR6, TRAFER, KEPLER, and Fagan's 13 subroutines
which were mentioned in the preceding section.

The inputs to the program include the inputs mentioned
in A.1 plus tabular values for the position and velocity of

the Earth with respect to the Sun in a heliocentric mean
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ecliptic and equinox coordinate system of 1950.0 and the
position and velocity of the Moon with respect to the Earth

in a geocentric mean ecliptic and equinox coordinate system
of 1950.0. These positions and velocities are rotated through
the angle € to frame 1. Normally, if the JPL Ephemeris Tapes
are used rather than tabular values, a rotation is not nec-
essary because the positions and velocities are available

in frame 1.

A.3 General Comments

The components of the probe's initial position and veloc-
ity vectors in frame 1 are specified in the main program
(RIL and VIL). These components are based on the orbit pa-
rameters given in Chapter 1.

The measurement times used to compute the values listed
in Tables 6.1 and 6.2 are spaced over the period of one yéar
to coincide with the occurrences of high range rate. With
the exception of the ephemeris data, the inputs to both pro-
grams are identical and are listed in A.4.

Again, it 1s important to note that it is not necessary
to have actual measurement data to obtain the final result,

P at conjunction.
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COMMON

2AM

UeCVeTLsBByRMET30,3)3VME(30,3),RBS{3D, 31,VBS(374,3),
ITRA4S U343 ) yRILI3IHZVILI3)oRA13YZSTIU30)9EXLOvE) oS53V wEgAViugl A

DOUBLE PRECISIUN U,CV

DIMENSION CI{646)sCIT(0+6) 3t PI(G4O) 9O sl G46)4S(Gat),
10{(60s6YsTMI3:3)s INT3s3) s TS S{ 33T T{3s3)3stPlLeb)sLldlbeb),

1AA{A,6
FORMAT
FORMAT
FORMAT

FORMAT(ELS.R)

)

{3E392.10)
(6E18.9)

(777

FURMAT (10F7.5)
(3F1%.10)

FHIRMAT
READ |
READ |
RRITE
W2AITE
N=3

95:91)

he92)

(6be91)

(Hebd)

CAONTINUE

REAL (5492)
CV=1.0/57.29577957
P1=3.141593

U=46R6.H1T18{3.6%2.483.60 )82/ (5.77%89,2C )03

(STtTlel=1,y i)
(EO(K 4K)gK=1,0)

(ST1tI)yI=1,141)

AV={4./9.)en{]1./3.)
F=1./AM-1,

TL=0.0

AvN=3 %P1

Al=-P1
wRITE
WRITE
wRITE
nRITE
WNRITE
WRITE

{(6493)
{6y44)
(6434)
{Oy44)
(6493)
{6¢144)

{SS5(d)ed=14 1)

Pl g AMGF Ay iy 0!

(S5(d), J=1,13)

(Eu(KoK)y

CALL TRUE (F,ATl.F,EAC)
CALL XTRP (EQ4EAC)
CALL NVRT (AA,EX)

WRITE
wRITE

CALL PERI

~RITE

DO 125 K=1s6

(6493)
{6444)

(6993)

({AA{T,d),

(NyEP)
({eP(KyL )y

EP{K K )=SQRT(EFP(K,K))
WRITE(64767) EP{K,4K)

aRITE

IF (N=2])

=13

(he44)

CONTINUE

GoT10
FND

54

51951952

K:]'/)

I=1,C)yd=1,06)

K=lyt),

S
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SUBROUTINE VCIR(T,HMM)
COMMOIN UgCVTLsBR,RME(30,3),VME(30,3)yRRS{3043),VBS(30,3),
o 1IR45( 3,3 GRILL3) o VILI3)4R4(3)4STL30)eEX{646)e55{3) 9L AVUNGEARGF L],
JAM
DOUBLE PRECISIUN U,CV
DIMENSTON HMM(6,6),RHO(3) ,RHOD(3)yTR1I3(3,3),RHOP(3),RHOPP(3),
LCRHG{3),TR34(3,3) PWRAI3)PWRALI3),PWRAZ(3),PWRA3(3),
1PWRLI3) sPWRL3(3)yVFKI{3)4C1(3,3),RHODL(3),RHOL1(3),ERAT(3,3),
CAKP L3, VP(3) . VKP(3) e e e N
OUMENSTUN DUCK(ZOO)
399 HURMAT(6EZ20.8)
997 FORMAT (3F20.F)
J95 FURMAT (2E20.8)
T=ST(1)
XTIt =0.0
RTL(1)=1.0
RIL{2Z2)=0.0
RTIL(3)=0D.0
vIL{1)=0.0
VIL{Z2)=5.228034445
NIL(3) =0
PARALILTI=1,0
PWAL{Z)=0.0
PH2AT(3)=0.0
Paldl3(11=0.0
PWRL3(2)=DSORT (L)

o PWRP3(3)=0,0 — e e e

CALL KEPLER (XIL'T PNRAIyPNRL%,PwRAZ PHRA*)
DU 15 11=1,3
EST L EI)=PWRA2(IT)
15 vESLTELT1)=PuRA3{II)
CALL HFPLER(XTLyT+RILVILRP,LYP)
Call TRO{RPLVP,L)Y o . . i B
3011 K=71,3
REHMK)=R2pP(K)-NysS{1,K)
11 RHODIK)=VP(K)I=-VoS{],K)
FPHUYAG =SORTIPHU(L) #2246 H0{2 ) %% 2ERHO(3)=x2)
RHDVY A= (RHO( 1) #kHOD (L) ERHU(Z2 ) #*RHOD( 2 YERNOD( 3 ) #RHOD( 3) ) /RHUMAY,
D13 M=1,.3
HUPP () =VBS{T40)
13 LEEP(Y)==REBS{T4#)
CALL TR&E(RHUPP,,RHOP,TR13)
CALL TRAFER(24+1,TR13,RHU,CRHD)
FL=ASINICRHU(3) /RHUMAG)
AZ=A8IN(CRHO{1 )Y /RHOMAG/COS(ELY)) I ; o
ATo=47
IF (CPHU(Z2)) 2U,21,22
23 TF {CPHO{YI)Y) 23424,25
23 A/=PI-A7D
S5 T 29
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AZ=P1

25

21
26

GO TO 29

AZ=PILAZP

GO TO 29

IF (CRHU{1)) 20,27,28
A7=3.0=P1/2.0

GO 10 29

27

MMM ] ,6)=0,0

A7=0.0

GO 14129 . N

A7=P1/2.0

Gu T 29 _

AZ=A7P

CONTINUE
HMM(1,1)=CUS(AZ)/RHOMAG/COS(EL)
HMM(1,2)==-SINIAZ)/RHOMAG/CUSIEL)
HMM{143)=0.0

HMM(1,4)=0.0

HMM(145)=0.0

HMM(2,1)=-SIN(EL)*#SIN(AZ)/RHOMAG
HMM2 4,2 1==SIA{ELI#COS{AZ)/RHOMAG
HMM(2,3)=COS(EL)/RHOMAG
HMM(2,4)=0.0 . .

HMM{2,5)=0.0

HMMI2 ,6)3=0.0

VEK(1)=HMM({]1,1)

VEK(2)=HMM[1,2)

VEK{3)=HMM({]1,3)
CALL TRAFER(142,TR13,VEK,VKP)

CALL TRAFER(241,C,VKP,VEK)
HMM{] 1) =VEK[])

e HMM{3,5)=RHO1(2)/RHOMAG

HMM(1,2)=VEK(?)
HMM(]1,3)=VEK{3)
VEK(1)=HMM(2,1)
VEK({2)=HMM[2,2)
VEK{3)=1{MM (2, 3)

oL ALL TRAFER(1424TR1I3LVEKVKP)

CALL TRAFER(241,C,VKP,4VEK)
HMM(2,1)=VEK(2])
HMM{2,2)=VEK(2)
HMM(2,3)=VEK{3) . . . .

S51==(PHOD(1)#RHU(1)ERHOD(2)#RHO(2)E&RHOD(3)#RHO(3))

CALL TRAFER(2,41,C4RHOyRHOL)

o CALL TRAFER[2414CRHODGRHODLY —

HMM{3,1)=RHOD1(}1)/RHOMAGSES [#RHOL1{ 1) /RHUOMAG# =3

HMM (3,2 )1=RHOD1(2)/RHOMAGLS I #RHO1({2) /RHOMAG#«3
HMM{3,3)=RHOD1{3)/RHOMAGELSI #RHOL{3)}/RHUMAG#=%3

HMM(3,4)=RHOL1 (1) /RHOMAG

HMM(3,6)=RHO1{3)/RHOMAG
RETURN
END
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SLERLUTINE KEPLER(TIS, TSP RIS,VISyRS,VS)
LIMEANSTEAN RIS(31.VISI3),RS{2),vS5{3). .

COMNMIAN LaCVoeTL B aRVMFL2C,3),VME(2043)4BS(3C43),v1S(30, 3).
1TRAS(2,2)yRILI3)YoVILI3) o N4{2)oSTU3C) sEX{6a&)aSS{2)eEqAVNSEAP oF o1,
zAv

COLELE FRECISIUCM L.Cv

COULPLE FRECISICA RIL2),vI(2),R{3),v(3)

COLALE PRECISICA TIaTSePLVIRIMaVINMGENTI ALY 3Py LLP s ARG e XN LR s SKsbns
TV a0 g VN g P By NG /M TN, TTU Xy X

CCLrLY FRECISICAN TZ4CyeSs6

11=11S

I=1S¢P

£C 12 I=1,2

RI(1)=RISLI)
1¢ vICDY=vIS(])

Ue=L

1S=1-11]

REv=21{1)ev {1 )1 (2)8vi{2)ERI(3)8VI(2)

RIV=DCERI(RI(I)=#PERT{2)ue?ERT(3)nn?)

NIV SERTUVI(LI ) o2 2BVIL2) 20V {3)uny)

ENT=yINMea2 /2 . 0=-LEF/RIV

ALF=(-2.C%EN])Y/LCP

K=C

T e 1415936 SORT (1, /(LIPe(ALFen1)))

17 1F [T1S8-F) 1sTslt -
¢ 1S8=T5-F

cL I1C 17

RI=ALFe(XN®&2)

~i
™

71 (=487,
IF (LAPSHTZ)Y-CLCCCCCCECL) 15,1G,2C
2C T7=T7={=ARE)/(Ce(C-1.2))
c=Cr17
cC 17 21
1€ CR=(

T7=]1.C/¢.C
$S=17
24 C=QE2.C
IF (0ars{T7)=.CLCCrCCCLCL) 22,422,423
21 17=T/s(-8RCI/((s(CEL.D))

=017

CL 1L 24

CR=C

1V (2 V/ZLLF ) » (Xinw o2 ) #CRE((LJC—RIM®ALF)/LSORT(URP ) )n(XNee2) el
IRPTYex®/USCRT (UCF)

JEADAPS(TA=TS)=,CCCCCCC1 10192 i
Z LTI Y= (REV/LLP) & (XN~ ALFC(X\"’)'SR)C((I.u-QIV'ALF)/fSCRT(LPP))“
T(fhar2 ) aCREQIM/LSCRT(ULF)

—

n-u N
[N
e

193

RN T
v
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X=XN
XN=X=(TN=-TS)/DT(LX
TF(XN=2€.C) 444,72
XN=XE.5 -~

4

[

¢

£
11

1

C

7

1C

2¢

12
14

IF(XN) E,4,64€

YN=X=,¢

K=KE1l

IF (K-=2C) 7:7.8

WRITE(é,11)

FOCRVAT(1SHERRCR TTFRATICN, /7))
CC IC 12

Azl . C-{(XNw22)/KIV)a(CR
B=TA-((XN#23)/CS5CRT(UDF ) )=SR
CC & I=1,3
RII)=A«RI(IVEBeyvI(])
R¥=CSCRTI(R(1)}wuER(21%% 7ER(2)%22])

ZV=(CSCRTILEP)/ (PVRIM) ) u (AL Fe(XNu®2)#SR=XN )

IN=1.C-({XNxn2)/2M)=(CR

CC 17 I=1,3
VII)=ZF=RI(I)EZN=VI(])
VVEC=V(1)ne2EVI(2)%n2EV(2)ea?

EN=VYMSE/2.C=-ULPARM .

CC 25 I=1,3

RS(I)=RI(I).

vSin)=v(I)
IF(CABS(FN~ENT)=,C1) 12,1213
WRITE(E,14)

FCRVMAT(I12FERRCR EMNERGY/ /)

1z

RETURN
ENE

SUEFPCUTINE TRAFER(MyNy¥NI,VIF,VECC)
COLOIE EPECISILN C(243), VEC(2)

21
2

CIMEMNSTON XMT(3,2),VECC(2),VIP(2)
(C 22 ¥=1.2 . .

£C 21 1=1,2

LK I)=xMT{K,0) = . _
VECIK)=VIPIK)

JE(N=V) T ,72472

71
74

Tz
7¢

EC 74 1=1,2

VECOLT) = VECOI)=C(T,1)EVEC(2)aC (14,2 EVEC(2)#*C(],2)

cCc 1c 17

£C 15 I=1,2
VECULT)=vEC(Y)
CC 1C 14

N

T
1

'
-t
-~

CEAE

CC 1C 1=1,2

VECC(I)=VEC(I)*( (1, T)EVEC(2)=C(2,1)EVECI3)2C(2,])

KETLER
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SUBRCUTINE TRO(RPLVPC)
CINMEASTUN RPUR),VP(3)4C(3,3)
VMA=VP (1) #e2LVP(2)eu2EVP(3)ne2
IF (ARS{VNMA-1.0)=~.00C001) 2,72,1
vMaG=1.C

GC 1C 3

VMAG=SCQRT{yMA)
ClL2,1)=vPLl)/VMAG
Cl242)=VP(2)/VVMALG
Cl24,3)=vP(3)/VVaC
71=RP(2)aVP(23)=yP(2)%RP(3)
22=0P (1 )eVP(1)-vP(3)aPP(])

73= RP{1)sVP(2)-VP{1)*RP{2)
IVAT=S(RTI(Z1we2L700x2873uw?)
Cti,1)=/71/72%ACG

Cl3,2)=22/1VACG

Cl3,3)=23/7MACG
Plz=vPi2)a73=-yP(2)e/?
F2=yP(4)e7]1-VFE([)e73

P =yP(1)e22-VP(?)e]]
PMAG=SCRT(PIna2LPree2fPtus?)
C{l,1)=P1/PVAC

Cl142)=F2/PVAC

Clle3)=P3/PMAC

RETURN
END

SUPPCLTINE YTRP(FL,FAC)

XTRE _CXTRAFLLATLS INITIAL CLVARIANCE MATRIX{EC) FRCY INITIAL
CCOTNTLEAC/HADY 10 PERI=FCING

CL.""L\ LaLV!'L'LJB,quE(J.':)'VNE‘3(,'3)Q2“5(3:'3)1\/‘?5(3{:"3)'
1TR4C (2, ) ,RrIL L )4 VI (3) g3a ’_)'ST(BC).::X(h,(;),S'S(1),F,AVN"(A:"F'F‘IQ
ZAv

COLGLE FRECISIUR Loy
,,EI?'.EL\.ELIL&,EC.(LJL)sECI(Lu’.)uCI(C.é)OClTlbaé).A(é-b)o'”"l}a.’_).L’\(l.})
LeT5(02452),17(3,2) :

CALL MIRM{TH Lot ACsFAPy Y )

CALL MTAN({TN ) 5 b AT R8P, Ayi)

CALL MIwS{TSeE 4L AC,EAPAyn)

CALL YIRTATT 4 EAC,EAP Ay )

COLL CCLNM (CaCleClIT4TNMoT0NTS,1T)

CALL ANvDTIECTEL)

CALL VPY2(A,LCI,C1)

CALL woy W (Ex,L]1y0)

RETL N

g0
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SUHRCLTINE TRUGS(FOCC,EMA,TALF)
_CCMPLTE . IKRE _TRUL ANCMALY FCR ELLIPTIC CR HYPERBLLIC uRBIT.
CIVEN TIE MEAN ANOMALY ANC cCCENTRICETY
TCL= l.CL-CE
CCAV= 57.265779917
IF{ARS{ENA)=-TCL)IEN,,3C45C
HC =:I
T1A=C.
CC 1C 117
SC IF(ECC-4CC1)20,2C,3C
2C RCCT=1.
CL TC 4acC .
2C RCCT= SCRYT ( ABS { (1.8 #CCY/{1e= ECC) ) )
4C COATINLE
E=EVA
CC 1C [I=1,1C
CE=(LVA-{E~FCCesIN (E)))/(1.-FCCeCCS (E))
E= £E&CE
IF{ ApS (CE/E)- TCL)Y 15,15,1C
1C . COATIANLE o
18 TA=2, riaTAh(HFFI!SIN(F/E.)/C(S(E/? ))
1€ RETLR
ENE

[$4

SUEBRCLTING COCMIVMGCTZCET IV, TN,TS,TT)
L=C +CR CLLSTIERL L=1 FCR SAVMPLES WM 1S THE CPEN LLCP INDEX
CCV¥NEN LoCVeTL CByRME(20,2)3VME(3Cy2)4RRE{3C,2),vS({30C,3),
ITRAE (3, 2) yRIL{3)eVILI2)4RA[Z2)4STI30)+vEX{E+6)YeSST2) 4 EqAVNLEADF 4P,
z AV
COLELE FRECISICN LoCvV L
CIVMENSTON CIUE e ) oCTTHEZE)9TM{343)aTN(3,3),TS(2,2),TT(3,2)
.. dE (M) 23241 _.
1 A==CTEAVAN®ST (M)
CALY TRULE (EsAsF4EAC) :
CALL VTIRVNM([TMF EACFAP,AVAN)
CALL MTRN(TNGELLAC,EAP,AVN)
CALL MIQS{TS,EWtACFAP,AVYN)
L CALt MIRI(TT s ACEAP,BYN)
¢ CC Y TI=1,3
CC & J=1,43
CI{l,0)=1T(J4,1)
CItIub2)==Tn(l, 1)
CTUIR2,U0)Y==TS(Jy 1)
CI0IE2,0€2)=TVgs 1) . .
CITUL,4)=TT(1,J)
CITUT uE)==T5(]44)
CITUIFR24J)==TN(1,4J)
CITULIF240JE3)=TNM(1,UJ)
RETLFA
EAC

3]
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LLERILTINE FERT(N,EP)

CUMNMEA L'CVy]l’l‘P'pyt(3")'3)1VME(3003)’RPS‘3C'3)|VBS(30'3)1
TIRGHEA4 23 4RI U2}y VIL U3 o RG{2) 4 STUI0) o FX L6 t) 9 SSU2 )y FyAVNSFAR,F 41y
c AV

COLBLE FRECISIUN L,LCV

CLLELE FRECISTION AM(6,6)

LIVENSTIN CI{eq0C)sCTTLEZE)sFPILO36)sHIE) sHEH{E64E)ClbeE)
16 (€ a€ )y TMI 24 2) g IN{343) 3 1S5(3,32)oFP 66 ) ol 0IELC)TT(2,3%)
LIMERNSTION REMO,¢)

FUERENMAT tt3Ca1%)

FORMAT (L 18.9)

te 2 121,30

L XY

CALY COUM{T o 0Tl IT 4TV IR, T5,1T)

W lib (eqe1) S1LT)

CALY T ([Tyrnve)

WETTIE {6 4SG3) (e VML UgNJ)sNU=]146),MI=143)

L )=14A

DL 1 ¥k=],€

FLRE Y b MMk K)

CALL 20YL {bl.et)

CALE MEYZ(Babt gt D)

CALL NYFYZ2 (Gl T4}

0 b w=l,¢

[ Lo 2Kl

Pl Y= 1K L)/75500)

AA[{K L)L ReLIERA[KLL)

XF (‘("'L) .-?gf?’:

BA{L o) =PALK, L)

Contpnty

COANTINLE

Centintt

CLnlIiLE

CALL M (FRT b pytR)

LALYT swRT {EP FET)

T 4 kal,é

CL 4 =i,y
Al b )=00C0
RETLRN

ENT

SLEM LT[ E AVRTLCGE(CC)

IaveR5Ien CE . 6Xe MAIRIX -

COVYi o Ly TL gty 0e (40, 1) g yME(3C,2),RPS(3C, ), VhS(30,2),

TTR45 (1, 2) gL (3)aVILI3)s403),STU30)sEX(6+96)4SSI2)EJAVNEAPFWPT,
AN

CILGLE FRECESICH LoV

Crtel s PRECISTCA Clayglr)y iyt IV

CIVIASIUY GQClobet ) lCClE,L)
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CC 1C T=1,6,1
CC 5 J=1:6+1 _
C(]vJ)=CCC(‘vJ)
£ C(I,JE8€)=CaCCOLCLCCC
1C (I I8€)=1.CCCCLICCC
CC 3C 1=146.1

EC 14 J=146€y1

IF(CARS({QUT+I))-TARS(GI(J,1)))1Ls14,14

11 CC 12 K=1,4€,1
S=Q (9K
ClJdeK)=C{T,K)
ClI,K)=¢S
C=C I KES)
ClJoKEE)=C LT 4KEE)
12 {I,K8€)=5
14 CONTINLE
CIv=G(1,1)
CC 15 J=1ly€41
ClTlsed)=6 (14 J)/0 1LY
1€ Cll4Jd8e)=CT4JbC)Y/TTV -
LC 27 Jd=146el
IF (I-J) 2C430,2C
2C Clv=C(J,y1)
CC _25 Kzljﬁyl e
ClLeK)=C{JyK)=CL(T,K)=D]V
25 CUIWyKEEY=L{IyKELI-C (T KEE)R{ TV
2C CONTINLF -—
CC 25 l=1,6|1
CC 25 J=146,y1
25 CC(1.d)=6(1,d86)

RETLRA
ENC

SUBRCLTINE MTRM(C,ECCLERC,E20,ANVEL)

. CIMENSICAN C(3,3) . . ..
E=ECC
x=gA(L
Y=E£C
2={Y-X)/2.
L=lYEXx)/2.

o I=(2.%7-FECCeSIN (Z)eCLS (LY)=(CCS (ZIEECC*CLS (U d)-4an51nN (/)

P=ANVEL
SANX=SIN (X)
SAY=STA (Y)
SNZ=SIN (1)
SAL=SIN (L)
X = < N .

CSy=CCsS (Y)




CPHI=1.CFE®CSX
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CS2=CCS (7))

CSL=CS (L)
BLFFA=S(RT (1.C-Faw?)
PF18=1.C-FeCSY

171=1.CEEeCSY
CAMN A= SCRT ((l1,~Fra2ua(Sxes2)s (lo~Fesu2eCsyYus2})

clil, 1=t (P TeRETAL (L2 aSNZwBETA)/CELTA®®2 )2 ( (] ~Fau?)

1#SAZ-TELTARE®SAXECSZ)) ) /CAVYA

Cll,2)=( (e oxALPH3® b TA)/CELTAR®? ) 2SN R (CSZ-EuCSL))/GAMMA

Cll,2)=C.C

Clay1¥=o(1(1{ z.iALPFA)/lfLYAl'Z)'((-TZI)1(3.'Z-€'5NZ'CSU)L2.

TeSA7 o (ERCSLEC 78 (1.CLF*{SX~Fuu2eCSXxe%2))))/0ANVA

Ci2,7)= ((CLL]B#TZIE(?.t/PELTA**?)G((—YZI)'FiSAX*(5.*7—&*5“[

PaCSU )0 CESNZa(caCuF oSN~ (] CREx®2)a N7} )) ) /CANVNA
Clzy2)=(.C

Ci2,10:=C.¢C

Clt2,2)=0,¢C

Cl2y )=l e ({28 N7uu2) /0 FELTR)

2ETURN

ENC

SUEZCUTINE MTRN(F,FCC, T 0CFAT ZANVEL)
CIMEASECN F{3,2])

E=((C

f=Za/LNVEL

aC

-
1
»
~—
~
(A

.

YEYYs24

Zowounoun ok ™

sTa (X)
IN (y)
N (2D
No{L)
<
<

£x)

{vy)

{7}

(L)

ALPEA=S T (1l (C-Exa))

OV p=r TALLSOR] (le-Fas2n{ s x2u2)aSCRT (|, ~FEux22CSYaau?2))
FrI=1.C-g#*CSXx

T721=1.C-FaCSY

FOL 1= AMMARD - [2T721 2SN 7 (( 70FE2CSL)
FULW2)=CAMNMAR? (83 PHART 7 [ %S 7 %a?
Fll,2)=C,C
FlZa1)==-(CAMMAR . AL PHLs TSN ne?)

L Y I I R N 1]

P O . VIR N S Sy
T

CYTHED NN A A = 0™ N =« X I'D
Ly NEy 2 » S

A
n
—
[
™5y
(B
N try

Te#Z-£CCHSTIA (23200 (L) j={CCS (ZVEFCCRECS (L ) )-4 . S IN

(7))
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FUP222)=CAVMMA® (4 «SN72{CS2CE%CSLY~(1 CESCSY )n () EERCSY)® {3,207~
ccﬂhlrch))

F{zZ,2)=C.C

Fi3,1)=(C.C

F(2,2)=(C.C
F{3,2)=CEeTARSNZ e (CS7-FalSL)
RETL2N

ENT

SUUREUTINE MIRSUS,bCCoEAC, 12T ,ANVEL)
LIMENSEICN S{3,43)

F=FCC

X=g bl

Y=( AT

I={Y=-Y)/2.

L=1lyix)/z.

J={2axI~-LCCeSIN (Z)YeCLSE (L))« (CCS (ZYBLECCH=CLS (L ))-4.#51IN (2}
P=ANVRL

SAX=5IN (X))

SAY=SIN (Y)

SNZ=LIN {2)

Sat=s N {L)

LSX=C e X)L

Cly=0(S (vY)

CSZ=C0y (7))

SSU="U0y L)

ML PHEA=Y  T—fwx?

dEIA=1 ,C—reCOX

COLTA=  C-Sw( iy ) ) L
CoappA={ 7,028 )/ "TAwR2at Pl [fuaeSQRT (1eC—Faal?e(SxXun2)as5(?7 (l..—F
lees:(syen?2))

CUT 1 )=t AMNAR (AL PEAR (3,0 a7 =" 0 FaSAN2eC L) {(FETARLCLLTARE® %2 i X»
ISAYEALPHRA® (1o 7L "1 AaER( S v ~YSCELTAY ) &SN 2207

S{1,2)=CANNMARS T T (ALPH2 )2 N uFaSAXe(/—taSNZ#CSL)YESNZ®e? e (ALPHALE
12#CSY el { L TA)-tra, sSNZaSAL# (2 C#[ ETARCCZaCSUECSY=LLLTA))

S{1,2)=7,.C

SUZ241)=0 20 VMARS{ T (ALPEA ) s (2, N#EaSANY#{7-FEaSNZaCSL)=-Sy/Zus28{ AL PH
19Fe CoxaBfTA)-Cav2uSN7a NLs( 2?2, CaRFELTACSZaCSURCSX=P1ITA))
C{Z273=CAMNMAe (Fou e SAXESAY (3, Cul—4 , CoEeSN/aCSLEFaa2uSANZaCS2e(CSLe
1#2-CSAL 882 ) )=AL P AnSh T2 5/7e{ 1. CEFen2)-2.0% (5L}

S{z42)=(,C

s{2,1)=C.C

(242 )=Ca"0

s$(3,2 ='(7 w22 [ (SANZ7«CSZV/ (1A CELTAY)Y)

fT
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SLBRULTINE MIRT(TZFCCL,EMCFAT 4 ANVEL)

_LINMENSTEN T(3,3)
F=£CC
X=[AC
Y=FAD
I=(Y-X)/2a
L=(Y£X)/?.
B=AANNMEL
SANX=SIN (Xx)
SANY=SIN LY}
SNZ=51IN (7))
SAL=CIN (L)
CSx=C(< (x)
CSy=¢£(¢S Yy} .
CS72=C0¢ (7))
CSL=CCS (L)
AL PHA=)] .C-Euep
Ftir=1.,0-FaCSX
CELT2=1,0-FsCSY
Pri=1.Cee«CSX . .
T71=1.CLE=CSY
CAVMMA= SyR1
T(l,1)= ({T/TeRETAE((2
1#E«SNY®CSZ)))/GaivA
T2y =((( c e BSERT

((l.—Fl«7¢CSYa§2);

(lo-F®a2+CSYex2))
SCNZ#BETA)/CELTA#«2) a (ALPHARSNIELLELTA

(ALPHA)Y)/UELTA® %2 )u(PH]I= (2, #2-E=SN72({50L)

-2, (o7 (FaCSLLCS7(T21-FeuDa(SYR®2))))/CANMA

T{l1.2)=C.C

T(2,1)==1(1 (L02.2SCRT
13)))/7CnNmmaA
T(2,2)=H{ {(CeLTYePufrg?

1#CSL =2, CeShN7e{, .
Tl2y2)=C.
T(*yl)—
T(2,2)=¢

T(2, i =]

erl’

.C

(DLPHA)®BETA)/i.FLTAwx2 e/ ((S7-CCSUL

L/TELTARR? ) u (PHInEeNRKY# (3, Col-Faesi?

TaTASLULESAN7 1. CEEx%2)))))/GAVMA

=({2.eaN7882)/TFLTR)
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SUERLLTING MEYL(Ht k)

CUMMLA LeCVelLolCoRME(IC,I2) 4 VMELI3C,2)4RAS{3C3),VESI3L,31),

1TRA={ 7y 1Y R (¥ )yviLL 1).R4(’,).ST(30).FX((_.b).SS(?).F,AVI\.FAP.F,P!.

ZAWV

CULPLY FRECISTUN L 4CV
CCLELY FRECISICN ALE)
CIMEACSTON F(€)gb (£ &)
L 1 I=1.6

A{TY=r(1])

CC 2 1=14¢€

e J=l,¢

FE{Ted) A1) ()

TR (1=J) 243,72
Prddallzpr{1sd).
CONTIALE
QAETL2N
EAD

SLERCLTINE MPY2 (XX ,XY,%X7)
CLMNLA LelVelLslBoRME(2C,
TTRAS(2,2) yRIL(A)gvIL () g 4
z AV

LCLELE FRECISION Loy

Xy TIVES Xx2Z

CLLBLF FRECTISTUn A{Eeh)ygii{eyr)yClegt)
CIVENSION XX(&at)aXY[€st)sxl(6e6)

T 7 J=1.¢

EU 2 K=2]ly6

Bloexk)=xY (JeKx)

Blauex)=x2{JsK)

CC 1 J=1,4¢

LC 1 K=1,¢

‘.(J")=CQ

CC 1 L=146
C‘JQK’=C(JQK)‘-"(J,’.”B(L"‘)

CC 2 J=14é&

CC 2 r=],¢

XX{ua)=sC{der}

QETL <A

ENC

Yo VNE(3C 2 yRRS{3Cy 2 )4 VBS(3Cs23),
21 aSTU3C) o FXUgl) ySS{2) s o AYNJEAPFypP T,
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SLPRLETINE NPYZI({XX,yXYy4X7)

Xy 1IVM{S xZ, XX IS SYMMETRIC

Covvi LeCVaelbL, it RVME{10,2),VME(30,2),RS(3C, 1), VRS(304+?),

1TRaS( 2, 2)LRILE3)evILE2) 402}, STI3CIEX(OsE)aSS{2 sl s AVNGEAL F 4P,y

ZAV

gcuLeLt FRECISIUN LoCV

CeL“L: FRECISIUA AlBeb) P {ELE)4CLEL6)

CINMENSICA XX{6at) s XY EsE) s XL16350]) I .
LC 4 J=1s¢€

CC 4 K=lsC

A(lek)=xY JdeK)

H{JeK)I=X2({JsK)

CO 2 J=1le€yl

CC 2 <=Jefa1 . _

Cldwx)=Co

£o 7 '1'("1

L(..o‘\)=((J KY+A( S, ) #3 (L ,4¥%)

IF (L-¢) 3,1, 1

IF (.-«) 2._

C("’J)_
CCANTIN
rc s
e o8
XX [ J4¥
RETL N
FNC

+

=C{dgK
LE
=1
=1
)=

'—0“”‘

?
L}
CldeK)

e l"l‘!\! ‘\\(I)‘v Y! )

AR AR S Crbyv FRIC0

[ JRECTS U 3‘(‘-'(-)7~‘(4'y()'c(()yﬁ)
LU NN A X KT A B N AT

{ ! 1—19(,

] T RS
Y il )

Tet gl

Jecool
o 140 Loyr)
fr (o Y 1,741
Al 3Y="0ue¥)
Lottt

LU s 1= at

L. A = lec

7ty 1)=201,0)
2ETL

T“A‘

—
-
[ 1} |l "

po-g
4
- .
x
[

&
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DRNARAM TMRUT NATA

MEASHREMENT TIMES TN YEARS PAST INJFCTION
e 76N 29 754757 4(C9B5634175222e219028,28472364,2956RB4317591435n445,3R3299
04 52N2 4161534449008 ¢4RIRA2e503765451471645804244602327e46242304635181
e TINBANGTLLEEON 3777550700452 eB8713554B542009,8761172.898015e9418214963723

INJFCTION FRROR COVARTANCE MATRIX(NTAGONAL ELEMENTS)
¢ 17N 1NN ARNELNE (10T CINNNANE=N6,10T01INNNONE~06
¢ 152300 NANESN2 297 2 TANNANE=N3,15330NNNDAE-02

MEASHREMONT cRROR FOVARIANCE MATRIX(NTACONAL FLEMFNTS) FOR VARYINAR
NItAL TTIFS NF RANGF PATF
FULNCANANAE O ANGONANCANELNS 1 7TLONONCAF LD
3 LONTOANTESNE JANLACANANANE TG 3GINNANANNEND
34NN N ANE L B G 3NLCARNANNE=CB (444N NANONE-N]
34NN OE=054304 00000 "0E-05.1600N00N00E~C3
2ANNNNNANE T8 G304 CNNDNNANFaN5 40N C00N0NE-04
RNLOCNNNCE LN NG ONNNCANESNG 4440 00NN ONE-CSH
I LNNNACACEaNg (304 000ONANE=15,4NN000000NE=-0H
B GT N NI Q3N L AN ANCE=N5 160NN ANONE-CT
e RULAANTAAAESNE (304 INANANNESNE 4ANALNNNNAE-NE
@AY NNC T AN NG g 30LONANNACE-NE,16N00NON00E~-D9
e 3T YNNND AN NE DB a3040NNNNANELN8 4000 CO0NONE-10
eI HIIN T N TESNR G304 NNNNNOF-03,1600CANCORE-DT
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5 Listing of the Geometrically Exact Program.

94
33
L4

DY
92

111

re

e

2101

54

COFRER  EAL

COMMON UsCVeTLyBByRME(30,3),VME(30,3)},RRS(30,3),VB5(30,3),
1TR45(3,3),RIL(3),VIL(3)4R4(3)yST(30)sEX(646)5SS(3)sEsAUNSIEAPSF,PI,
2AM

DOUBLE PRECISIGnN U.CV

DOURLE PRECISION RMFE(30,3),VMEE(30,3)},RBSE(30,3),VBSE(33,3),C0,
lSN,EBAR'CCN'RG

NIMENSTION HMM(6,6),VBI{(3},RBI(3),RDS(3},VNS(3)
DIYENSIGN CI(646),CIT{646)1EPI1646)3HI6) HH{6,6) 4516460,
1 TMI3,3)3TN{3¢3)9TS(343)9TT(343),EPI646),E01{6,6]),
1AL (H,¢6)

FORVAT (3E393.10)

FURMAT {6E1R.9)

FOR¥AY (//77)

_FORMAT _(10F7.5)

FURMAT (3E15410)

FORMAT(3E15.8)

FORMAT(E15.8)

REAL (5,91) (ST{1},I=1,30)

REAT (5,992) (EO(K4K)sK=146)

WRITE 16,910 (ST(I)41=1,30)

WRITE (6444)

Dol M=1,30

READ(B5,111) (RBSE(M,J),J=1,3)

READ(5,111) (VBSE(MyJ),J=1,3)

PEAT(S,4111) (RMEE{MyJ)yd=1,43)

REAGI5,111) (VMEE(M,J),d=1,3)

CV=1.27574295774657

ERAR=23,4457587aCV

CO=NCOS({ERAR)

SN=ESIN(EBAR)

CON=149599C00/6378.3255

RN 101 1=1,30
RME({1,1)=RMEF{I,1)/CON

RME(T 42)=(RMEE(1,2)#CO-RMEE(I,+3)#5N)/CON
RME(T43)=(RMEE(I1,2)#SNERMEE(],3)=CO)/CON
VME(I,1)=VMEE(I,1)%365.25/CON

VME(T 4 2)=(VMEF{1,42)#CO-VMEE(],3)#SN)*365.75/CON
VME(1,3)=(VMEE(],2)#SNEVMEE(T,3)%C0)*365.75/CON
RBS{I4+1)=RBSE(T,1)
BBS{1,2)=RBSE(1,2)«CO-RBSE(I,3)=5N
RRS(1,3)=RBSE(I,2)*SNERBSE(I,3)+CO
v3S(I,1)=VvBSE(1,1)%365.25
VBS{T1,2)=(VBSE{1,2)#C0O-VBSE(I,3)#SN)*365.25
VRS(1,3)=(VBSF{I,2)«SNEVBSE(T,3)#C0)#365.25
N=3

CONTINUE
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WAL (5992) (SS(J)yd=1,3)
P1=3,141593
UZ40PRAI1TI#(3,682,443,6520)882/(5,2R49,27)%83
VIL(1)=4.593304522
VIL(2)=2.290636416
VIL{3)=.79934156134
Az25,824%(V

$3=26 3, THe(Cy

[t =A% 6.0

DI 1LY=.4T757479526

RI {2 )==.806( 64201

RIL A 7)):‘. 3400404595209
Vg M ING 2603278

A1 Y=CUSIA)=CuL{B) =G

2 (2)=CUSTA)«STwl) #RG
DA(3)=STNIAY#RG

ALl TR3(AL13,TR4H)
Avz={4./ i e {la/3.)

"":10/!\3-7—1.
WAL 23
Al==01

WETTUT {6L993) PIaUgANMgELAYN AL

RITT {6y44)

A21 T2 (5904) (5000)y J=143)

S2TTE (el h)

w2 1T 15493) FLlKygK)y £=1,061)

NRLV= (6Hyeba4)

CALL TRuE [E,AL1,F,EAC)

CALL LF22 (FuyFat)

CALL 2T (AA,FK)

SETTE (H,93) ((ad(Ied)y 1=1,0)90=146)
AT (6y84)

CALL 2k 2] (NGEP)

W PTTE {(0e93) ({eP{KyeL)y K=Lly)y L=146)
2L TE (6 464)

T 1?75 K=1l,.6

OOk, ) =SORT(EP{K,,K))

AtTTE(L,T6T) EP(K,yK)

IF AN=2) 51,451,452

=3

Croat iU

Si1 10 L4
£
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SUBCPOUTING veTa( )
(SRR LN U,(;Vy‘l.5'4'R'4E(3""/)yVME(3nv 3) RS 4D, VeV ul5094),
lquﬁ(3.5),%1L(5).11L(3).%4(5).ST(30),!X(L.b).&:(%).t.AVd.{Ar.},Vi.
e
GHUISEE S OREFCTS T U GV
DIVELSTUN HMY (660 g PHGE I g REGTE3) g TRYIB0 3,7 ) 4 RHOD(3) 320U { =),
IORET(3) 3 TR34 (3,3 PaP AL 3)yPwRAL 3) 4 PWRAZ(3) ,PW2A 2L 3),
1,“.,1‘3.1,(H.t“m’.l_%(H.‘J!-!f(").(,(‘!.*).-Mﬂ)Dl(3),%“'4111(5),r“'\l('§,—5),
L {3 s VI {3) s vKitl })
230 R PRMAT (5915 .8)
el FIRUTATL30 15,7 )
IAVE I BER SN & N PR
{9 Fiil AT{C1542)
T=x1(1)
il e/ e Bl
Adui=llsies3ah,
CHU=TL/ 305250 /LD D
CHE=ELCATOIRIY (U ))
XIH=300 Vel 2b o in (X Ji=XJ )
AL T Y Y0 S, 121 )
COLL R (=1 XJl,¥dS, TR 3
CALL TR2{24 XUl g a7 AT
XTL =04
EALL vEDLERIYTL g ToRILyVILy 2y ve)
CALY TRRP VP, L)
DAL TRAFRR(4,3,T234,4,41 5} )
CALL TRAF 2 (), 4, TREZ, I, 1)
CALL TO2AF R4, 4,0 AT g Rag v 1)
AL TR =1 (] 3T <l dgnid 20,0 L)
Y 1Y 51,3
SN L S BT I S S B Y 6 YO LRIt A
RHA LR )=y D (s i wyE( a7 )=V S{I,K)
SR A R A L0 TR AVAS SN I SR AR I ('S0 T SRR ST 28
A S GRU{THL I Y e e 280l YRR ERY{ 3 kR
A R I G B R R I R B AL I RN B2 KA RINY F S T T RN UUR I WA TIORS
R O A O R T O R RNE Y el FAAIEIEY IP S RS TSI PR I IR SO’
CALT T R PR3, T 3, iy i )
CAll TAARI R 390 4T 34, 2 0, Yo P}
CALL Trar T Qla, 2, THAS 4000 00 1)
LA im0k 03 ) /0 A )
A= PR ) 2 D HAG s, L) ) )
A7D=487
Tho(odn(1)) 20421422
22 IR {LRHGE2)) 23,000,455
P73 A7z=p]=-A/P
STy



25

26

217

94

AlZ=PILAZLP
GU T 29

IF (CRHGOE2)) 26477428

A7=3,0#P[ /2.0

GO Ty 2?29

AZ=0.0

GO Yy 29

AZ=P1/2.0

GO Ty 29

A7=A7P

COLTIUE

MM (L 1)==STN{AZY/RHOMAS/ L (VL)
HMM (14 2)=COSTAZ)/HHOMAG/LOS{CL)
HMI(]1,3)=0.0

HY (1 44)=),.)

HMM(]1,5)=M,0

HM 1 146)=0.0

HM 12, L) ==SINIEL)*CNS A7)/ 2t MAn
HV {24 2)==SINILEL)«SINCAZ )Y/ 2t AG
HMM (2, 3) ==C1IS5(EL) /RHUMAL

HMM(244) =Uadd

HMA( 2,5 )=(),1)

HMM(2,0)=0.0

DIy 3 Kz2] 42

VER{L) =lidMIK, 1)

VEK(2) ="Ky 2)

VEK(3)=1MM{Ke3)

CALL TRAFER(S44,1R45,VEY 4 w7AL)
CALL TRAFER(4,43,TA34,PulAl,yPuA2)
CALL TRAATER(143,T7213,PWwkA2,24RA3)
CALL TRAFTR(2,1,4,C,PW2A3,VKP)
MV, 1) =VKP (1)

HME(K 3 2)=sVKDP L)

Hb (K y3)=VRP(3)
ST==(RUHUL(L)*PHGILYARHOD (2 ) #2HU( 2 ) Sk ( 3)Y = RIHO( 3 )}
CALL T2AFFR(Z2,1,CyRHOD,2HOOL)
CALL THRAFER(2,1,04,RHUyRHGL)

DN 21 IK=1,43

HMML3, IK)=QHODL{IK) /PHUMAGLS T#RHOL (T ) /RADNMAS R 3
1P=fr 43

H¥M( 3, IP)=RHUL{IK)/RHOMAG

RETURY

£ND



SLERCLYINE YRI(T,1E,0)
CCMMEN

11R4E (2,3
CCULELE FRECISICAN LgCV
CIMENSTON CU343), 212,32
CCLELE FERECISICM ACF(2

95

3)e EL242), C(?)
e2)y ETF(3,

2{1,1)=1.C~C.CCLZCEST2{T10uz,)-C. CCCCCCI’O(TCIE.)
P(192)=-CaC2224SEENT-CaCLCCCETIEN TRz )ECLCCCCCZZ10(TR02,)

Elzs))=-£211,2)

LsCVeTLsEEsRNME(2CaZ) s WME(2C o2 ) oRPS{3C 42 4 WESI2L,23, XN s
YoRIL(2)yVIL(2),R4(Z),ST(2C)

A(193)=-CeCCST17110TECLCCCCCCTR(TanZ )EC.CCCCCCCEN(TRRD,)

2,1)==211,2)

F(242)714C-CoCCLZ4ST€u(Tamz, )-Ca(CCCCCIEn(TunZ,)
F(Z43)=~CCCCICESSH(TauZ }-C.CCCCCCC2a{TuuZ,)

B(Z242)=81{2:3)

22,3 =Y. (~C.0CUCaTlntTnnz, )EC, (C(((((¢!(1"

Yy=C.C0CC1

(M=CVvellze1127SC2-CLCE
Ivye(Tesz,))

CL=(yel€a.275451€7C12,
JEC.CIGeys(Tau2,})

17€2G6€52¢¢éaTC-11.2

’.W

2CE2C ;i TLEZC TS nYaTEZC . Elayn(Taa7 ) EC.C2n

1S75aYsT1-11,2C1Lnyn(Tenl,)

CF=Cve{z(E, E439t17€( 1114C4CFC2=T1C-C. C1C324nT1-C. (IC’Q’i(Tli(.)-

1C.lceyea{Tax2,))

(L=CVl(?F(.CEIZlCCGCC.QEE(‘?EZE&CTC€3.C’lY¢1&3.(3'\!(1!!2.l)
Teays(Ten2,)C.032nY

C=CVvu(zE2.CECE2(CZEEC.4
le(lea?,.}

TCEELaynTLE4.552¢

sYsTE4.E

CSl=-CaS€CERYNSIN{Z, COSL)—C,CSECHaYnSIN{Z CoSL-CrMI-CCl2o0Y2SIN{2.L
12SL-CF1ECC217aY®SIA(SLECPIEC.CLELnYNSIN(SL-CPECMIEC.CLIEERYSSIN(SL
~CF-CN)=CoC1a4nyaSIN(2,(aSLECP=ZaCoCL)-CaClzZaYsSIN(3,CeSL-CF-L¥)E
TCL1ETE Y aSIN{SL-CFIEC CCTPuYOSINIZ CuSL~2.CaCPIECCLLanYeSIN(SLECP
-7 (aCL)EC.ClETaYRSIN{Z.CoSL-2.CuCL)-CL CCPGaYRS[N(L,CoSL-2.C2CL)

[ELSI=-{47e6G2TECC4EZxT)eYaSIN(CNMIECCECCoYSIN(Z CaCNM)-2,

Cleluys

1SIMN(ZoCaCL)~Coal?T08YRSIN(2.(#CL-C)ECLCEG4YMSIN{CLEG)EC,CT4auYn
SCIN(ZoCaCL-CMIECC1ZEuYaSIN{ZCOCF-CMIECL2ECCaYaSINM(CL-CIE
TCeClzSsYaCSIN(Z.CaCL-2.C2CF)

CF= (Co.z4€sCCS{ZoCaCL

JECLCECRaCLS(Z.CaSL-CPMIRC.(2€6

1CCS(2.CaSL=CF)=CoC126uCLS(SLECF)~C.CCFENCCS(SL~CFECNM)IEC.CEED

ZCCS(SL-CF-L(M)IEC.CCE12CLE 2. (aSLECF-

SCCS(2,00SL-CF=CHM) )Y

Z.CeCLIEC.CCELn

[ELF—(e,.-E44!C(<(CP) C . ZE11%CCS(ZCaCNIETS22€9C0S(2.CuCLIEC.CEEE
1#CCS(2.CaCL-Cl-CCZEERCCS{CLEC)I-CoClE2aCCS(ZaCOCL-CV)-CaCCETS

cCCS{Z CoCF-CNM))my
[FLTLE=(TELEECE)CV
FELTST=(CELSTECSTYoCyY

FER=(77 L4ET15E7-CoC12CS4C4nT-C.CCEEnYa(Tanz,)E

E(1,1)=1.C

Elzs2)=1.C

E{2,2)=1.¢C
E(142)=-CHLTSIwCCS(FER)
Elza1)=-F(142)
EE=t(Z2y1])
E(1,3)==-LELTSIaSIN(EER)
FU2,1)=-E11,2)
E(zy3)=-CELTAE
ElZ,2)=-El2+2)

CCECeY

Ye(Ten2,)}eCy
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£C 1 I=1.2
€C 1 v=1,2
LC 2 A=1,2
ATF (N )=B(R,H)

ECF{I4NI=F(I,N)
CINY=ETF (T ,N)eBLF(N,¥)
1 TUl,M)=CLYYECL2)ECLD)
FETURA
thl

L3}

SLERCLTINE TR2UIN,TL,TS,0)

COMMON LaCv o Tl EESRMELZCZ ), WNEL20 42 )4 RES(20,2) 4 WBSL2C,32) XM,
JIRCE (242 )3 RTIL(2 ) VILI2),F4(2),¢7(2C)

FOLELE FRECISICMN L,4Cv

CIMENSTION [(2,2)

r=CCC21TECTAY T/ (1aCESac I T CCOCCCCCLCCCCCL))
FEM=TC0CaCTES4Z2€¢ (T SESE€LT24E(aTLEZSCLEN(,CCCCCCCCCCCCL)
T(TCxw2)Epell

1€
£

<

1

IF (2€C.0-FAM) E4C,
PANMSEAM=2€C.C
ccoTgoacE

FANM=Cyut AN

FE=+AMEEE

IF (M) 1Cs1lslz
C(1,1)=CCS (M)
L01,2)=-SIN(HR)
Cl1s2)=CaC
C
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CC 1L 14
b=hua( Ve3¢ (a2,
Lllsl)==valIN(+2)
[l lsc)=-waCLS(HL)
L(1:2)=C.C

vl )= a LS {HR)
2)=-thlh(kt)
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SLERCLUYINE TR2{FHTLCLON,L)

CCHMOA LeCVaTL oEEFME(2C 32 sV MEL2C 43 )gRPS(20 42 ), VES(3C2),XN(,
FTRAS(2,2) W RILI2) W VILL2)yRa(2),ST(2C)

CCLELE FRECISICH L,sCV

CIMENSION E£(32,2)

Clla1)==SIN(PHID)®CCS(CLON)

C{lec)==SIN{CLON)

L{ls2)=-CCS(FHI)eCLS(CLON) . N
21 )==CSIN(PHT)aSIN(CLIN)

c22)=CCS(CLON)

2)=-COS(FHI)RSINICLON)

y=CCS(Ft+1)

:('C

==SIM(FEI) — , e S

T T e e o
" w - e
T ot NY e
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